Continuous information on the suspended sediment in the water system is critical in various areas of industry and hydrological studies. However, because of the high variation of suspended sediment flow, challenges still remain in developing new techniques implementing simple, reliable, and real-time sediment monitoring. Herein, we report a potential method to realize real-time sediment monitoring by introducing a particle-laden droplet-driven triboelectric nanogenerator (PLDD-TENG) combined with a deep learning method. The PLDD-TENG was operated under the single-electrode mode with a triboelectric layer of polytetrafluoroethylene (PTFE) thin film. The working mechanism of the PLDD-TENG was proved to be induced by liquid-PTFE contact electrification and sand particle-electrode electrostatic induction. Then, its performance was explored under various particle parameters, and the results indicated that the output signal of the PLDD-TENG was very sensitive to the sand particle size and mass fraction. A convolutional neural network-based deep learning method was finally adopted to identify the particle parameters based on the output signal. High identifying accuracies over 90% were achieved in most of the cases by the proposed method, which sheds light on the application of the PLDD-TENG in real-time sediment monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c10714DOI Listing

Publication Analysis

Top Keywords

real-time sediment
16
sediment monitoring
16
deep learning
12
learning method
12
particle-laden droplet-driven
8
droplet-driven triboelectric
8
triboelectric nanogenerator
8
suspended sediment
8
particle parameters
8
output signal
8

Similar Publications

Identification of plant-based spilled oils using direct analysis in real-time-time-of-flight mass spectrometry with hydrophobic paper sampling.

Environ Monit Assess

January 2025

Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada.

Spilled plant-based oils behave very differently in comparison to petroleum oils and require different clean-up measures. They do not evaporate, disperse, dissolve, or emulsify to a significant degree but can polymerize and form an impermeable cap on sediment, smothering benthic media and resulting in an immediate impact on the wildlife community. The current study explored the application of rapid up-to-date direct analysis in real time (DART) with high-resolution mass spectrometry for plant-based oil typing.

View Article and Find Full Text PDF

The etiology of rheumatoid arthritis (RA) is multifaceted. One of the hypothesized pathways that results in the progression of RA is regulatory T cell (Treg) dysfunction. The pro-osteoclastogenic and immunogenic characteristics of microribonucleic acid (microRNA)-21 (miR-21) suggest its role in RA progression.

View Article and Find Full Text PDF

Establishment and application of TaqMan probe-based quantitative real-time PCR for rapid detection and quantification of Ichthyophthirius multifiliis in farming environments and fish tissues.

Vet Parasitol

December 2024

Department of Ecology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou 510632, PR China. Electronic address:

Ichthyophthirius multifiliis, a pathogenic ciliate, is a crucial pathogen of freshwater fish and can result in severe economic loss in the aquaculture industry worldwide. It is necessary to develop a sensitive and accurate method for detecting I. multifiliis in farming environments and fish skin and gills to protect fishes from infection of the parasite due to a lack of both safe and effective treatment drugs.

View Article and Find Full Text PDF

Modeling urban pollutant wash-off processes with ecological memory.

J Environ Manage

January 2025

Earth System Science Interdisciplinary Center, University of Maryland, College Park, 5825 University Research Ct, College Park, MD, 20740, USA.

Urbanization increases the extent of impervious surfaces, runoff, sediment, and nutrient loadings downstream, leading to the deterioration of urban surface waters. During pollutant wash-off from urban surfaces, the peak concentration of pollutants typically occurs after the rainfall peak. However, current urban wash-off models do not consider this time delay, assuming that the effect of rainfall on the wash-off process is immediate.

View Article and Find Full Text PDF

Community Assembly Mechanisms of nirK- and nirS-type Denitrifying Bacteria in Sediments of Eutrophic Lake Taihu, China.

Curr Microbiol

December 2024

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China.

Denitrifying bacteria, particularly nirK- and nirS-type, are functionally equivalent and could occupy different niches, but their community assembly mechanisms and responses to environmental heterogeneity are poorly understood in eutrophic lakes. In this study, we investigated the community assembly mechanisms of nirK- and nirS-type denitrifying bacteria and clarified their responses to sediments environmental factors in Lake Taihu, China. The quantitative real-time PCR and Illumina HiSeq-based sequencing revealed that the abundance and composition of two types of denitrifying bacterial communities varied among different sites in the sediments of Lake Taihu.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!