The method of non-aqueous conductivity titration (NACT) of organic weak acids was applied to quickly and accurately determine the phenolic-hydroxyl and carboxyl-groups contents in humic acid. By varying the pH of the humic-acid sample, the concentration of the titrant, and the nitrogen-gas flow rate, the optimal titration conditions were determined to be a sample pH of 4, titrant concentration of 0.05 mol/L, and nitrogen-gas flow rate of 80 mL/min. Applying the detection method to p-hydroxybenzoic acid showed that its phenolic-hydroxyl content was 758.82±111.76 cmol/kg and carboxyl content was 744.44±51.11 cmol/kg. The theoretical phenolic-hydroxyl and carboxyl-groups contents of the p-hydroxybenzoic acid were 723.96 cmol/kg respectively, indicating that the method can accurately quantify the carboxyl and phenolic-hydroxyl groups in the sample. The NACT was used to measure the phenolic-hydroxyl and carboxyl-groups contents in humic acid quickly and accurately. In addition, 29 humic acid samples from 8 provinces of China covering the main humic-acid producing areas were collected and analyzed for acidic-groups content using the reported method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449760PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238061PLOS

Publication Analysis

Top Keywords

humic acid
16
phenolic-hydroxyl carboxyl-groups
12
carboxyl-groups contents
12
detection method
8
acid samples
8
contents humic
8
nitrogen-gas flow
8
flow rate
8
p-hydroxybenzoic acid
8
acid
6

Similar Publications

To meet wastewater treatment quality standards for reuse, integrating advanced oxidation processes (AOPs) with Decentralized Wastewater Treatment Systems (DEWATS) is promising. This study aimed to optimize AOPs (ozonolysis, UV photolysis, TiO photocatalysis) for polishing anaerobic filter (AF) effluent from DEWATS, as an alternative to constructed wetlands. Metrics included pathogen reduction efficiency, post-disinfection regrowth, and effects on physical parameters (pH, EC, turbidity), organic matter (soluble COD, BOD, DOC, humic), and nutrient concentration (ammonium, nitrates, ortho-P).

View Article and Find Full Text PDF

Three-dimensional (3D) printing is a rapidly evolving technology. This study focuses on developing biopolymeric inks tailored for Three-dimensional (3D) printing applications, specifically to produce 3D-printed materials for wound dressing. Humic Acid (HA) was incorporated into the ink formulations due to its anti-inflammatory properties.

View Article and Find Full Text PDF
Article Synopsis
  • Coal-based humic acid residue (HAS) has potential as a nutrient-rich material for adsorbing harmful substances like mercury (Hg), and a modified version (N-HAS) was created to enhance its adsorption properties.
  • N-HAS demonstrated a strong capacity for Hg removal, with a maximum adsorption of 124.20 mg/g and stable performance over multiple cycles, effectively lowering Hg levels in both maize and contaminated soil.
  • The study highlighted that using N-HAS led to significant reductions in Hg content in maize kernels (up to 72.09%) and soil (up to 82.80%), with optimal results observed at an application rate of 0.4 kg/m.
View Article and Find Full Text PDF

The progression of periodontal disease (PD) involves the action of oxidative stress mediators. Antioxidant agents may potentially attenuate the development of this condition. Thus, we aimed to evaluate the effects of different doses of humic acid (HA), extracted from biomass vermicomposting, on redox status and parameters related to PD progression in rats.

View Article and Find Full Text PDF

Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC showed considerably better CIP degradation efficiency (96.9% at 20 mg·L) than traditional catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!