In the chromatographic separation process of oligonucleotides (ONs), mechanistic understanding of their binding and diffusion processes is of significant importance to determine operating conditions in a fast and robust way. In this work, we determined the number of binding sites and the diffusivities of ONs in a polymer grafted anion exchange chromatography through linear gradient experiments (LGE) being carried out at selected four to five gradient slopes. Synthetic poly (T)s with length ranging from 3 to 90-mer were employed as a model of an antisense oligonucleotide with typical lengths of 10 - 30 bases. Comparison of the retention was also conducted between the grafted anion exchanger with a conventional ligand and an anion monolith disk. For the ONs up to 50 bases, the number of binding sites determined can be correlated with the length of ONs, and the grafted resin showed a better diffusion and narrower peak width compared to the nongrafted one. The retention behavior became similar for porous media when the longer ONs (> 50mer) were applied. The results obtained suggest that antisense ONs can be separated with grafted ligands without sacrificing mass transfer properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2020.461495 | DOI Listing |
PLoS One
January 2025
Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.
View Article and Find Full Text PDFLiver Int
February 2025
Department of Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Hannover Medical School, Hannover, Germany.
Background And Aim: Bulevirtide (BLV) leads to beneficial virologic and biochemical responses when given alone to treat hepatitis delta virus (HDV) infection, which causes the most severe form of chronic viral hepatitis. We evaluated 48 weeks of BLV monotherapy, BLV + tenofovir disoproxil fumarate (TDF) and BLV + pegylated interferon alfa-2a (Peg-IFNα-2a), with 24-week follow-up.
Methods: Ninety patients were enrolled into six arms of 15 each (A-F); 60 patients were included in the main randomisation (arms A-D), and 30 patients (arms E-F) were randomised to the extension phase: (A) Peg-IFNα-2a 180 μg once weekly (QW); (B) BLV 2 mg once daily (QD) + Peg-IFNα-2a 180 μg QW; (C) BLV 5 mg QD + Peg-IFNα-2a 180 μg QW; (D) BLV 2 mg QD; (E) BLV 10 mg QD + Peg-IFNα-2a 180 μg QW and (F) BLV 10 mg (5 mg twice daily) + TDF QD.
J Biomater Sci Polym Ed
January 2025
Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran.
Bone disorders have increased with increasing the human lifespan, and despite the tissue's ability to self-regeneration, in many congenital problems and hard fractures, bone grafting such as autograft, allograft, and biomaterials implantation through surgery is traditionally used. Because of the adverse effects of these methods, the emergence of injectable hydrogels without the need for surgery and causing more pain for the patient is stunning to develop a new pattern for hard tissue engineering. These materials are formed with various natural and synthetic polymers with a crosslinked network through various chemical methods such as click chemistry, Michael enhancement, Schiff's base and enzymatic reaction and physical interactions with high water absorption which can mimic the environment of cells.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
Bone defects restoration has always been an arduous challenge in the orthopedic field due to the limitations of conventional grafts. Bone tissue engineering offers an alternative approach by using biomimetic materials, stem cells, and growth factors that are able to improve the regeneration of bone tissue. Different biomaterials have attracted great interest in BTE applications, including the poly(3-hexylthiofene) (P3HT) conductive polymer, whose primary advantage is its capability to provide a native extracellular matrix-like environment.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain.
The dialysis membrane based on a hydrophilic polymer (Hydrolink NV) was designed to enhance the movement of adsorbed water at the blood-membrane interface, aiming to achieve antithrombogenic and antifouling effects. This study aimed to assess the performance and albumin loss of the Hydrolink NV dialyzer in hemodialysis (HD) and post-dilution hemodiafiltration (HDF) with different infusion flows (Qis) and compare it with the hydrophilic FX CorAL dialyzer in post-dilution HDF. A prospective study was carried out in 20 patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!