Microbes acclimate to changes in substrate availability by altering the number of transporters on the cell surface, however there is some disagreement on just how. We revisit the physics of substrate uptake and consider the steady-state scenario whereby cells have acclimated to maximize fitness. Flux balance analysis of a stoichiometric model of Escherichia coli was used in conjunction with quantitative proteomics data and molecular modeling of membrane transporters to reconcile these opposing views. An emergent feature of the proposed model is a critical substrate concentration S*, which delineates two rate limits. At concentrations above S*, transporter abundance can be regulated to maintain uptake rates as demanded by maximal growth rates, whereas below S*, uptake rates are strictly diffusion limited. In certain scenarios, the proposed model can take on a qualitatively different shape from the familiar hyperbolic kinetics curves, instead resembling the long-forgotten Blackman kinetics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478835 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1008140 | DOI Listing |
In the context of Chinese clinical texts, this paper aims to propose a deep learning algorithm based on Bidirectional Encoder Representation from Transformers (BERT) to identify privacy information and to verify the feasibility of our method for privacy protection in the Chinese clinical context. We collected and double-annotated 33,017 discharge summaries from 151 medical institutions on a municipal regional health information platform, developed a BERT-based Bidirectional Long Short-Term Memory Model (BiLSTM) and Conditional Random Field (CRF) model, and tested the performance of privacy identification on the dataset. To explore the performance of different substructures of the neural network, we created five additional baseline models and evaluated the impact of different models on performance.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Mathematical and Physical Sciences, Catholic University of Temuco, Temuco 4813302, Chile.
: A previous study investigated the in vitro release of methylene blue (MB), a widely used cationic dye in biomedical applications, from nanocellulose/nanoporous silicon (NC/nPSi) composites under conditions simulating body fluids. The results showed that MB release rates varied significantly with the nPSi concentration in the composite, highlighting its potential for controlled drug delivery. To further analyze the relationship between diffusion dynamics and the MB concentration, this study developed a finite element (FE) method to solve Fick's equations governing the drug delivery system.
View Article and Find Full Text PDFPharmaceutics
January 2025
Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China.
: (PG) has been widely researched as a conductant drug for the treatment of lung diseases by ancient and modern traditional Chinese medicine (TCM) practitioners. Inspired by the mechanism and our previous finding about fructans and fructooligosaccharides from (FFPG), we developed a nano drug delivery system (NDDS) targeting lung cancer. The aim was to improve the efficiency of the liposomal delivery of Paclitaxel (PTX) and enhance the anti-tumor efficacy.
View Article and Find Full Text PDFPharmaceutics
January 2025
Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
Background/objectives: Neurodegenerative ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, represent growing public health concerns. Oxidative stress plays a key role in their development, damaging retinal cells and accelerating disease progression. Melatonin (Mel) is a potent antioxidant with neuroprotective properties; however, it faces limitations such as low solubility.
View Article and Find Full Text PDFPlants (Basel)
January 2025
School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.
Plant immunity is largely governed by nucleotide-binding leucine-rich repeat receptor (NLR). Here, we examine the molecular activation and inhibition mechanisms of the wheat CC-type NLR , a previously proposed candidate for the resistance gene. Though recent studies have identified as the true gene, Yr10 remains an important NLR in understanding NLR-mediated immunity in wheat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!