The band structures of the transition metal dichalcogenides (TMD's) 2H-MoS(0001) and 2H-WSe(0001), before and after palladium adsorption, were investigated through angle-resolved photoemission. Palladium adsorption on 2H-MoS(0001) is seen to result in very different band shifts than seen for palladium on 2H-WSe(0001). The angle resolved photoemission results of palladium adsorbed on WSe(0001) indicate that palladium accepts electron density from substrate. The resulting band shift will lead to a decrease in the barriers to the hole injection. The opposite band shifts occur upon palladium adsorption between 2H-MoS(0001). The overall trend is consistent with the deposition of other metals deposited on TMD's, except that for palladium adsorption on MoS(0001), there is an increase in the MoS(0001) substrate band gap with palladium adsorption, as is evident from the combination of photoemission and inverse photoemission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/abadde | DOI Listing |
Carbohydr Polym
March 2025
Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea. Electronic address:
The global challenge of wastewater contamination, especially from persistent pollutants like radioactive isotopes and heavy metals, demands innovative purification solutions. Radioactive iodine isotopes (I and I), stemming from nuclear activities, pose serious health risks due to their mobility, bioaccumulation, and ionizing radiation, particularly impacting thyroid health. Similarly, hexavalent chromium, Cr(VI), is highly toxic and persistent in water, linked to cancer and other severe health issues.
View Article and Find Full Text PDFMolecules
December 2024
"Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Alley 41A, 700487 Iasi, Romania.
The recovery of palladium from aqueous solutions is important due to its critical role in various industrial applications and the growing demand for sustainable resource management. This study investigates the potential of hybrid materials composed of MgAl layered double hydroxides (LDHs), chitosan, and ionic liquids (methyl trialchil ammonium chloride) for the efficient adsorption of palladium ions from low-concentration aqueous solutions. Comprehensive characterization techniques, including X-ray diffraction (RX), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TG), were employed to elucidate the structural and compositional properties of the hybrid materials.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Tailoring well-defined interfacial structures of heterogeneous metal catalysts has become an effective strategy for identifying the interface relationships and facilitating the reactions involving multiple intermediates. Here, a particle-particle heterostructure catalyst consisting of Pd and copper oxide nanoparticles is designed to achieve high-performance alkaline methanol oxidation electrocatalysis. The strong coupling particle-particle heterostructure catalyst induced a unique interfacial interpenetration effect to improve the interfacial charge redistribution and regulate the -band structure for optimizing the adsorption of CO intermediates on the catalyst.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon S7N 5C9, SK, Canada. Electronic address:
Precious metal recovery from secondary sources has received significant attention due to the reduced availability of precious metals from conventional sources. Herein, chitosan (CHT) was modified via cross-linking with glutaraldehyde (glu) to yield CHT-glu adsorbents with improved physicochemical and adsorption properties with precious metal ions (Au(III) and Pd(II)). CHT-glu adsorbents were prepared at variable glu ratios and characterized via complementary spectral (IR, C solids NMR, XPS) and thermogravimetry methods.
View Article and Find Full Text PDFEnviron Res
December 2024
College of Materials and Environmental Engineering, Hangzhou Dianzi University, Xiasha University Park, Hangzhou, Zhejiang, 310018, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!