Spin Polarizations in a Covariant Angular-Momentum-Conserved Chiral Transport Model.

Phys Rev Lett

Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-3366, USA.

Published: August 2020

Using a covariant and angular-momentum-conserved chiral transport model, which takes into account the spin-orbit interactions of chiral fermions in their scatterings via the side jumps, we study the quark spin polarization in quark matter. For a system of rotating and unpolarized massless quarks in an expanding box, we find that side jumps can dynamically polarize the quark spin and result in a final quark spin polarization consistent with that of thermally equilibrated massless quarks in a self-consistent vorticity field. For the quark matter produced in noncentral relativistic heavy ion collisions, we find that in the medium rest frame both the quark local spin polarizations in the direction perpendicular to the reaction plane and along the longitudinal beam direction show an azimuthal angle dependence in the transverse plane similar to those observed in experiments for the Lambda hyperon.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.062301DOI Listing

Publication Analysis

Top Keywords

quark spin
12
spin polarizations
8
covariant angular-momentum-conserved
8
angular-momentum-conserved chiral
8
chiral transport
8
transport model
8
side jumps
8
spin polarization
8
quark matter
8
massless quarks
8

Similar Publications

Parametrization of Generalized Parton Distributions from t-Channel String Exchange in AdS Spaces.

Phys Rev Lett

December 2024

Center for Nuclear Theory, Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA.

We introduce a string-based parametrization for nucleon quark and gluon generalized parton distributions (GPDs) that is valid for all skewness. Our approach leverages conformal moments, representing them as the sum of spin-j nucleon A-form factor and skewness-dependent spin-j nucleon D-form factor, derived from t-channel string exchange in AdS spaces consistent with Lorentz invariance and unitarity. This model-independent framework, satisfying the polynomiality condition due to Lorentz invariance, uses Mellin moments from empirical data to estimate these form factors.

View Article and Find Full Text PDF
Article Synopsis
  • Measuring deeply virtual Compton scattering (DVCS) on the neutron is essential for understanding the nucleon's structure through generalized parton distributions (GPDs).
  • Neutron targets help complement data obtained from polarized protons, particularly in determining the poorly understood GPD E, which is crucial for analyzing quark contributions to nucleon spin.
  • The experiment utilized a longitudinally polarized electron beam at Jefferson Lab and the CLAS12 detector to measure DVCS on the neutron for the first time, providing new insights into quark-flavor separation of relevant Compton form factors.
View Article and Find Full Text PDF

Semi-inclusive hadron production in longitudinally polarized deep-inelastic lepton-nucleon scattering is a powerful tool for resolving the quark flavor decomposition of the proton's spin structure. We present the full next-to-next-to-leading order QCD corrections to the coefficient functions of polarized semi-inclusive deep-inelastic scattering (SIDIS) in analytical form, enabling the use of SIDIS measurements in precision studies of the proton spin structure. The numerical impact of these corrections is illustrated by a comparison with data of polarized single-inclusive hadron spectra from the DESY HERMES and CERN COMPASS experiments.

View Article and Find Full Text PDF
Article Synopsis
  • Entanglement is a fundamental concept in quantum mechanics, and this study focuses on its observation in particles generated at the Large Hadron Collider, particularly in top quark-antiquark events.
  • The research analyzes data from proton-proton collisions at 13 TeV energy recorded in 2016 and identifies events with two oppositely charged leptons to measure entanglement levels using a specific observable derived from the production density matrix.
  • The results show significant evidence of entanglement, with a measurement indicating a value of approximately -0.480 at the parton level, providing strong confirmation of quantum entanglement in top quark pairs with a significance of 5.1 standard deviations
View Article and Find Full Text PDF

Entanglement is a key feature of quantum mechanics, with applications in fields such as metrology, cryptography, quantum information and quantum computation. It has been observed in a wide variety of systems and length scales, ranging from the microscopic to the macroscopic. However, entanglement remains largely unexplored at the highest accessible energy scales.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!