Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report a unique naturally derived activated carbon with optimally incorporated nitrogen functional groups and ultra-microporous structure to enable high CO adsorption capacity. The coprocessing of biomass ( waste leaves) and microalgae (Spirulina) as the N-doping agent was investigated by probing the parameter space (biomass/microalgae weight ratio, reaction temperature, and reaction time) of hydrothermal carbonization and activation process (via the ZnCl/CO activation) to generate hydrochars and activated carbons, respectively, with tunable nitrogen content and pore sizes. The central composite-based design of the experiment was applied to optimize the parameters of the prehydrothermal carbonization procedure resulting in the fabrication of N-enriched carbonaceous products with the highest possible mass yield and nitrogen content. The resulting hydrochars and activated carbon samples were characterized using elemental analysis, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and Brunauer-Emmett-Teller surface area analysis. We observe that while N-doping and the activation process can individually enhance the CO adsorption capacity to some extent, it is the combined effect of the two processes that synergistically work to greatly increase the adsorption capacity of the N-doped activated carbon by an amount which is more than the sum of individual contributions. We analyze the origins of this synergy with both physical and chemical characterization techniques. The resulting naturally derived activated carbon demonstrates one of the highest CO adsorption capacities (8.43 mmol/g) with rapid adsorption kinetics and good selectivity and reusability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c10218 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!