Water molecules within a thin hydration layer, spontaneously generated on hydrophobic protein surfaces, are reported to form a poorly dynamic network structure. However, how such a water network affects the conformational change dynamics of polar groups has never been explored, although such polar groups play a critical role in protein-protein and protein-ligand interactions. In the present work, we utilized as model protein surfaces a series of self-assembled monolayers (SAMs) appended with polar (Fmoc) or ionic (FITC) fluorescent head groups that were tethered via a 1.5-nm-long flexible oligoether chain to a hydrophobic silicon wafer surface, which was densely covered with paraffinic chains. We found that, not only in deionized water but also in aqueous buffer, these oligoether-appended head groups at ambient temperatures both displayed an anomalously slow conformational change, which required ∼10 h to reach a thermodynamically equilibrated state. We suppose that these behaviors reflect the poorly dynamic and low-permittivity natures of the thin hydration layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202000742 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!