National data on patient characteristics, treatment, and outcomes of critically ill coronavirus disease 2019 (COVID-19) solid organ transplant (SOT) patients are limited. We analyzed data from a multicenter cohort study of adults with laboratory-confirmed COVID-19 admitted to intensive care units (ICUs) at 68 hospitals across the United States from March 4 to May 8, 2020. From 4153 patients, we created a propensity score matched cohort of 386 patients, including 98 SOT patients and 288 non-SOT patients. We used a binomial generalized linear model (log-binomial model) to examine the association of SOT status with death and other clinical outcomes. Among the 386 patients, the median age was 60 years, 72% were male, and 41% were black. Death within 28 days of ICU admission was similar in SOT and non-SOT patients (40% and 43%, respectively; relative risk [RR] 0.92; 95% confidence interval [CI]: 0.70-1.22). Other outcomes and requirement for organ support including receipt of mechanical ventilation, development of acute respiratory distress syndrome, and receipt of vasopressors were also similar between groups. There was a trend toward higher risk of acute kidney injury requiring renal replacement therapy in SOT vs. non-SOT patients (37% vs. 27%; RR [95% CI]: 1.34 [0.97-1.85]). Death and organ support requirement were similar between SOT and non-SOT critically ill patients with COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460925 | PMC |
http://dx.doi.org/10.1111/ajt.16280 | DOI Listing |
Ann Intensive Care
January 2025
School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F, 3 Sassoon Road, Academic Building, Pokfulam, Hong Kong.
Objective: Evidence of the overall estimated prevalence of post-intensive care cognitive impairment among critically ill survivors discharged from intensive care units at short-term and long-term follow-ups is lacking. This study aimed to estimate the prevalence of the post-intensive care cognitive impairment at time to < 1 month, 1 to 3 month(s), 4 to 6 months, 7-12 months, and > 12 months discharged from intensive care units.
Methods: Electronic databases including PubMed, Cochrane Library, EMBASE, CINAHL Plus, Web of Science, and PsycINFO via ProQuest were searched from inception through July 2024.
Curr Cardiol Rep
January 2025
Department of Cardiovascular & Thoracic Surgery, Sandra Atlas Bass Heart Hospital at North Shore University Hospital, Northwell Health, 300 Community Drive, 1 DSU, Manhasset, NY, 11030, USA.
Purpose Of Review: This article discusses a tailored approach to managing cardiogenic shock and temporary mechanical circulatory support (tMCS). We also outline specific mobilization strategies for patients with different tMCS devices and configurations, which can be enabled by this tailored approach to cardiogenic shock management.
Recent Findings: Safe and effective mobilization of patients with cardiogenic shock receiving tMCS can be accomplished.
Curr Gastroenterol Rep
December 2025
Division of Pulmonary, Critical Care, and Sleep Medicine, Medical College of Wisconsin, 8701 West Watertown Plank Road, 8th Floor: HUB for Collaborative Medicine, Milwaukee, WI, 53226, USA.
Purpose Of Review: The purpose of this narrative review is to describe the mechanisms for gut dysfunction during critical illness, outline hypotheses of gut-derived inflammation, and identify nutrition and non-nutritional therapies that have direct and indirect effects on preserving both epithelial barrier function and gut microbiota during critical illness.
Recent Findings: Clinical and animal model studies have demonstrated that critical illness pathophysiology and interventions breach epithelial barrier function and convert a normally commensal gut microbiome into a pathobiome. As a result, the gut has been postulated to be the "motor" of critical illness and numerous hypotheses have been put forward to explain how it contributes to systemic inflammation and drives multiple organ failure.
Crit Care Med
January 2025
Division of Trauma, Surgical Critical Care and Emergency Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
Objectives: To provide a narrative review of disordered lymphatic dynamics and its impact on critical care relevant condition management.
Data Sources: Detailed search strategy using PubMed and Ovid Medline for English language articles (2013-2023) describing congenital or acquired lymphatic abnormalities including lymphatic duct absence, injury, leak, or obstruction and their associated clinical conditions that might be managed by a critical care medicine practitioner.
Study Selection: Studies that specifically addressed abnormalities of lymphatic flow and their management were selected.
Cells
December 2024
First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece.
Hypoxia-inducible factors (HIFs) are central regulators of gene expression in response to oxygen deprivation, a common feature in critical illnesses. The significant burden that critical illnesses place on global healthcare systems highlights the need for a deeper understanding of underlying mechanisms and the development of innovative treatment strategies. Among critical illnesses, impaired lung function is frequently linked to hypoxic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!