Extremely Rapid Self-Healable and Recyclable Supramolecular Materials through Planetary Ball Milling and Host-Guest Interactions.

Adv Mater

Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.

Published: October 2020

The host-guest interaction as noncovalent bonds can make polymeric materials tough and flexible based on the reversibility property, which is a promising approach to extend the lifetime of polymeric materials. Supramolecular materials with cyclodextrin and adamantane are prepared by mixing host polymers and guest polymers by planetary ball milling. The toughness of the supramolecular materials prepared by ball milling is approximately 2 to 5 times higher than that of supramolecular materials prepared by casting, which is the conventional method. The materials maintain their mechanical properties during repeated ball milling treatments. They are also applicable as self-healable bulk materials and coatings, and they retain the transparency of the substrate. Moreover, fractured pieces of the materials can be re-adhered within 10 min. Dynamic mechanical analysis, thermal property measurements, small-angle X-ray scattering, and microscopy observations reveal these behaviors in detail. Scars formed on the coating disappear within a few seconds at 60 °C. At the same time, the coating shows scratch resistance due to its good mechanical properties. The ball milling method mixes the host polymer and guest polymer at the nano level to achieve the self-healing and recycling properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202002008DOI Listing

Publication Analysis

Top Keywords

ball milling
20
supramolecular materials
16
materials
9
planetary ball
8
polymeric materials
8
materials prepared
8
mechanical properties
8
ball
5
milling
5
extremely rapid
4

Similar Publications

Optimizing key parameters for grinding energy efficiency and modeling of particle size distribution in a stirred ball mill.

Sci Rep

January 2025

Minerals Beneficiation and Agglomeration Department, Minerals Technology Institute, Central Metallurgical Research & Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo, 11722, Egypt.

Fine grinding using a stirred ball mill can enhance ore liberation but incurs high energy consumption, which can be minimized by optimizing operating conditions. This study explores the impact of key operational parameters-grinding time, stirrer tip speed, solid concentration, and feed size-on grinding efficiency, evaluated using specific energy inputs, in stirred milling of Egyptian copper ore. The particle size distribution (PSD) of ground products was simulated using the Gates-Gaudin-Schuhmann model (GGS) and the Rosin-Rammler-Benne (RRB) function.

View Article and Find Full Text PDF

In this contribution, we apply our newly developed ball-milling platform, which combines Raman spectroscopy and thermal (IR) imaging, as well as acoustic and high-speed optical video recordings, to the synthesis and transformation of citric acid-isonicotinamide (1:2) cocrystal polymorphs in transparent PMMA jars. Particularly, we demonstrate how Raman, temperature, acoustic, and video data are complementary and enable detection and connection of chemical and physical events happening during ball-milling in a time-resolved manner. Importantly, we show that the formation of the three cocrystal polymorphs can be detected through acoustic analyses solely.

View Article and Find Full Text PDF

Scale-Up of Nanocorundum Synthesis by Mechanochemical Dehydration of Boehmite.

Ind Eng Chem Res

January 2025

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.

This work presents the scale-up of room-temperature mechanochemical synthesis of nanocorundum (high-surface-area α-AlO) from boehmite (γ-AlOOH). This transformation on the 1 g scale using a laboratory shaker mill had previously been reported. High-energy Simoloyer ball mills equipped with milling chambers of sizes ranging from 1 to 20 L were used to scale up the mechanochemical nanocorundum synthesis to the 50 g to 1 kg scale, which paves the way to further increase batch size.

View Article and Find Full Text PDF

High-entropy alloys (HEAs), containing five or more elements in equal proportions, have recently made significant achievements in materials science due to their remarkable properties, including high toughness, excellent catalytic, thermal, and electrical conductivity, and resistance to wear and corrosion. This study focuses on a HEA composed of 23Fe-21Cr-18Ni-20Ti-18Mn, synthesized via ball milling. The alloy was treated with hydrochloric acid (HCl) to enhance its active surface area.

View Article and Find Full Text PDF

Magnetic nanoparticles of Nd2Fe14B prepared by ethanol-assisted wet ball milling technique.

Sci Rep

January 2025

Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!