The global soil carbon (C) pool is massive, so relatively small changes in soil organic carbon (SOC) stocks can significantly alter atmospheric C and global climate. The recently proposed concept of the soil microbial carbon pump (MCP) emphasizes the active role of soil microbes in SOC storage by integrating the continual microbial transformation of organic C from labile to persistent anabolic forms. However, the concept has not been evaluated with data. Here, we combine datasets, including microbial necromass biomarker amino sugars and SOC, from two long-term agricultural field studies conducted by large United States bioenergy research programs. We interrogate the soil MCP concept by investigating the asynchronous responses of microbial necromass and SOC to land-use change. Microbial necromass appeared to preferentially accumulate in soil and be the dominant contributor to SOC accrual in diversified perennial bioenergy crops. Specifically, ~92% of the additional SOC enhanced by plant diversity was estimated to be microbial necromass C, and >76% of the additional SOC enhanced by land-use transition from annual to perennial crops was estimated to be microbial necromass. This suggests that the soil MCP was stimulated in diversified perennial agroecosystems. We further delineate and suggest two parameters-soil MCP capacity and efficacy-reflecting the conversion of plant C into microbial necromass and the contribution of microbial necromass to SOC, respectively, that should serve as valuable metrics for future studies evaluating SOC storage under alternative management in changing climates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.15319 | DOI Listing |
Nat Commun
January 2025
Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China.
Effective soil organic carbon (SOC) management can mitigate the impact of climate warming. However, the response of different SOC fractions to warming in abandoned croplands remains unclear. Here, categorizing SOC into particulate and mineral-associated organic carbon (POC and MAOC) with physical fractionation, we investigate the responses of POC and MAOC content and temperature sensitivity (Q) to warming through a 3-year in situ warming experiment (+1.
View Article and Find Full Text PDFSci Total Environ
December 2024
Institute of Ecology and Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. Electronic address:
Soil organic carbon (SOC) plays a critical role in mitigating climate change. Conceptualizing SOC into particulate organic carbon (POC) and mineral-associated organic carbon (MAOC) helps us more accurately predict the responses of organic carbon, with varying chemical composition, molecular size, and degree of association with soil minerals, to environmental changes. To assess the controlling factors of particulate organic carbon (POC) and mineral-associated organic carbon (MAOC), plant and soil samples were collected from 54 temperate grassland sites in Northern China, and the impacts of climate, plants, soil properties and microorganisms on POC and MAOC contents were analyzed.
View Article and Find Full Text PDFEnviron Microbiol
December 2024
Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Twin Cities, Minnesota, USA.
Trends Microbiol
November 2024
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Environ Res
January 2025
Environment Research Institute, Shandong University, Qingdao 266237, China. Electronic address:
Inland wetlands might be an important "carbon sink", and the chronosequence development of newly formed inland wetlands offers a natural and suitable opportunity for studying the dynamic effect of plant and microbial necromass carbon (PlantC and MNC) on the soil organic carbon (SOC) stabilization. The space-for-time chronosequence approach was used and plots were established in the three ages of newly formed inland wetlands (2, 5, and 16 years). Soil samples were collected in the surface (0-10 cm) and subsurface soil (20-30 cm).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!