The developmental trajectory of the primate brain varies substantially with aging across subjects. However, this ubiquitous variability between individuals in brain structure is difficult to quantify and has thus essentially been ignored. Based on a large-scale structural magnetic resonance imaging dataset acquired from 162 cynomolgus macaques, we create a species-specific 3D template atlas of the macaque brain, and deploy normative modeling to characterize individual variations of cortical thickness (CT) and regional gray matter volume (GMV). We observed an overall decrease in total GMV and mean CT, and an increase in white matter volume from juvenile to early adult. Specifically, CT and regional GMV were greater in prefrontal and temporal cortices relative to early unimodal areas. Age-dependent trajectories of thickness and volume for each cortical region revealed an increase in the medial temporal lobe, and decreases in all other regions. A low percentage of highly individualized deviations of CT and GMV were identified (0.0021%, 0.0043%, respectively, P < 0.05, false discovery rate [FDR]-corrected). Our approach provides a natural framework to parse individual neuroanatomical differences for use as a reference standard in macaque brain research, potentially enabling inferences regarding the degree to which behavioral or symptomatic variables map onto brain structure in future disease studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727342 | PMC |
http://dx.doi.org/10.1093/cercor/bhaa229 | DOI Listing |
Background: VY-TAU01 is a recombinant humanized IgG4 monoclonal antibody (mAb) directed against pathological tau for the treatment of patients with mild dementia or mild cognitive impairment due to Alzheimer's disease (AD). Both VY-TAU01 and its parental mouse IgG1 mAb Ab-01 target an epitope in the C-terminus of tau, bind pathological tau with high affinity and selectivity over wild-type tau, block paired helical filament seed-induced tau aggregates in vitro, and selectively stain tau tangles in AD and P301S mouse (C57/B6J-Tg[Thy1-MAPT*P301S]2541Godt) brain. Ab-01 robustly inhibits seeding and propagation of pathological tau in a P301S mouse seeding model.
View Article and Find Full Text PDFViruses
December 2024
Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA.
Lymphocryptoviruses (LCVs) are ubiquitous gamma-herpesviruses that establish life-long infections in both humans and non-human primates (NHPs). In immunocompromised hosts, LCV infections are commonly associated with B cell disorders and malignancies such as lymphoma. In this study, we evaluated simian LCV-encoded small microRNAs (miRNAs) present in lymphoblastoid cell lines (LCLs) derived from a Mauritian cynomolgus macaque () with cyLCV-associated post-transplant lymphoproliferative disease (PTLD) as well as the viral miRNAs expressed in a baboon () LCL that harbors CeHV12.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Shanghai Zerun Biotech Co., Ltd., Building 9, 1690 Zhangheng Road, Pudong, Shanghai 201203, China.
Background: Cervical cancer is associated with persistent infection of high-risk human papillomaviruses (HPVs). Prophylactic HPV vaccines have been recommended and have significant efficacy in preventing cervical cancer. Multivalent HPV vaccines have a better preventative effect on HPV-related diseases.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Chiome Bioscience Inc., 3-12-1 Honmachi, Shibuya-ku, Tokyo 151-0071, Japan.
Delta-like 1 homolog (DLK1), a non-canonical Notch ligand, is highly expressed in various malignant tumors, especially in hepatocellular carcinoma (HCC). CBA-1205 is an afucosylated humanized antibody against DLK1 with enhanced antibody-dependent cellular cytotoxicity (ADCC). The binding characteristics of CBA-1205 were analyzed by enzyme-linked immunosorbent assay and fluorescence-activated cell sorting assay.
View Article and Find Full Text PDFFront Immunol
December 2024
Myeloid Therapeutics, Inc., Cambridge, MA, United States.
Introduction: The approval of chimeric antigen receptor (CAR) T cell therapies for the treatment of B cell malignancies has fueled the development of numerous cell therapies. However, these cell therapies are complex and costly, and unlike in hematological malignancies, outcomes with most T cell therapies in solid tumors have been disappointing. Here, we present a novel approach to directly program myeloid cells by administering novel TROP2 CAR mRNA encapsulated in lipid nanoparticles (LNPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!