Background: While keeping in view various aspects of energy demand, quest for the renewable energy sources is utmost. Biomass has shown great potential as green energy source with supply of approximately 14% of world total energy demand, and great source of carbon capture. It is abundant in various forms including agricultural, forestry residues, and unwanted plants (weeds). The rapid growth of weeds not only affects the yield of the crop, but also has strong consequences on the environment. These weeds can grow with minimum nutrient input requirements, have strong ability to grow at various soil and climate environments with high value of cellulose, thus can be valuable source of energy production.

Results: L. and L. have been employed for the production of biofuels (biogas, biodiesel and biochar) through nano-catalytic gasification by employing Co and Ni as nanocatalysts. Nanocatalysts were synthesized through well-established sol-gel method. SEM study confirms the spherical morphology of the nanocatalysts with size distribution of 20-50 nm. XRD measurements reveal that fabricated nanocatalysts have pure standard crystal structure without impurity. During gasification of L., we have extracted the 53.33% of oil, 34.66% of biochar and 12% gas whereas in the case of L. 44% oil, 38.36% biochar and 17.66% of gas was measured. Electrical conductivity in biochar of L. and L. was observed 0.4 dSm-1 and 0.39 dSm-1, respectively.

Conclusion: Present study presents the conversion of unwanted plants L. and L. weeds to biofuels. Nanocatalysts help to enhance the conversion of biomass to biofuel due to large surface reactivity. Our findings suggest potential utilization of unwanted plants for biofuel production, which can help to share the burden of energy demand. Biochar produced during gasification can replace chemical fertilizers for soil remediation and to enhance the crop productivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7441714PMC
http://dx.doi.org/10.1186/s13068-020-01785-xDOI Listing

Publication Analysis

Top Keywords

energy demand
12
unwanted plants
12
biofuel production
8
plants weeds
8
energy
6
weeds
5
biochar
5
nanocatalysts
5
exploring prospective
4
prospective weeds
4

Similar Publications

Introduction: High-producing dairy cows often face calving stress and reduced feed intake during the transition period, leading to body fat mobilization to meet production demands. Supplementing rations with energy-dense sources like rumen-protected glucose (RPG) may enhance production performance in early lactation.

Methods: This study evaluated the effects of RPG supplementation on feed intake, body condition score (BCS), production performance, and blood metabolites in 32 early-lactation Holstein Friesian cows (6 ± 1 DIM; milk yield: 30 ± 5 kg/day; body weight: 550 ± 50 kg; BCS: 3.

View Article and Find Full Text PDF

The U.S. Army Aeromedical Research Laboratory (USAARL) Multi-Attribute Task Battery (MATB) represents a significant advancement in research platforms for human performance assessment and automation studies.

View Article and Find Full Text PDF

Metabolism of cancer cells and immune cells in the initiation, progression, and metastasis of cancer.

Theranostics

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

The metabolism of cancer and immune cells plays a crucial role in the initiation, progression, and metastasis of cancer. Cancer cells often undergo metabolic reprogramming to sustain their rapid growth and proliferation, along with meeting their energy demands and biosynthetic needs. Nevertheless, immune cells execute their immune response functions through the specific metabolic pathways, either to recognize, attack, and eliminate cancer cells or to promote the growth or metastasis of cancer cells.

View Article and Find Full Text PDF

Metabolic reprogramming in lung cancer and its clinical implication.

Front Pharmacol

December 2024

Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Lung cancer has posed a significant challenge to global health, and related study has been a hot topic in oncology. This article focuses on metabolic reprogramming of lung cancer cells, a process to adapt to energy demands and biosynthetic needs, supporting the proliferation and development of tumor cells. In this study, the latest studies on lung cancer tumor metabolism were reviewed, including the impact of metabolic products and metabolic enzymes on the occurrence and development of lung cancer, as well as the progress in the field of lung cancer treatment targeting relevant metabolic pathways.

View Article and Find Full Text PDF

ConspectusWhile traditional quantum chemical theories have long been central to research, they encounter limitations when applied to complex situations. Two of the most widely used quantum chemical approaches, Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT), perform well in cases with relatively weak electron correlation, such as the ground-state minima of closed-shell systems (Franck-Condon region). However, their applicability diminishes in more demanding scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!