Electrowetting-on-dielectric characteristics of ZnO nanorods.

Sci Rep

Department of Materials Science and Engineering, Inha University, Incheon, 22212, Republic of Korea.

Published: August 2020

Herein, we report the electrowetting-on-dielectric (EWOD) characteristics of ZnO nanorods (NRs) prepared via the hydrothermal method with different initial Zn concentrations (0.03, 0.07, and 0.1 M). Diameter of the resultant ZnO NRs were 50, 70 and 85 nm, respectively. Contact angle (CA) measurements showed that the Teflon-coated ZnO NRs with diameters of 85 nm prepared from the 0.1 M solution had the highest CA (137°). During the EWOD studies, on the application of a voltage of 250 V, the water CA decreased to 78°, which demonstrates the potential application of this material in EWOD electronics. Furthermore, we explained the relationship between the applied voltage and CA based on the substrate nanostructures and our newly developed NR-on-film wetting model. In addition, we further validated our model by introducing the homo-composite dielectric structure, which is a composite of thin layered ZnO/Teflon and nano-roded ZnO/Teflon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447809PMC
http://dx.doi.org/10.1038/s41598-020-71017-7DOI Listing

Publication Analysis

Top Keywords

characteristics zno
8
zno nanorods
8
zno nrs
8
electrowetting-on-dielectric characteristics
4
zno
4
nanorods report
4
report electrowetting-on-dielectric
4
electrowetting-on-dielectric ewod
4
ewod characteristics
4
nanorods nrs
4

Similar Publications

Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.

View Article and Find Full Text PDF

The interaction of protein with nanoparticles (NPs) of varying shape and/or size boosts our understanding on their bioreactivity and establishes a comprehensive database for use in medicine, diagnosis, and therapeutic applications. The present study explores the interaction between lysozyme (LYZ) and different NPs like graphene oxide (GO) and zinc oxide (ZnO) having various shapes (spherical, 's', and rod-shaped, 'r') and sizes, focusing on their binding dynamics and subsequent effects on both the protein fibrillation and antimicrobial properties. Typically, GO is considered a promising medium due to its apparent inhibition and prolonged lag phase for LYZ fibrillation.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) is a widely utilized synthetic polymer, favored in various applications for its desirable physicochemical characteristics and widespread accessibility. However, its extensive utilization, coupled with improper waste disposal, has led to the alarming pollution of the environment. Thus, recycling PET products is essential for diminishing global pollution and turning waste into meaningful materials.

View Article and Find Full Text PDF

Excess consumption of antibiotics leads to antibiotic resistance that hinders the control and cure of microbial diseases. Therefore, it is crucial to monitor the antibiotic levels in the environment. In this proposed research work, an optical nano-sensor was devised that can sense the ultra-low concentration of antibiotics, in samples like tap water using fluorescent zinc oxide quantum dots (ZnO QDs) based nano-sensor.

View Article and Find Full Text PDF

The design and preparation of advanced hybrid nanofibers with controllable microstructures will be interesting because of their potential high-efficiency applications in the environmental and energy domains. In this paper, a simple and efficient strategy was developed for preparing hybrid nanofibers of zinc oxide-molybdenum disulfide (ZnO-MoS) grown on polyimide (PI) nanofibers by combining electrospinning, a high-pressure hydrothermal process, and in situ growth. Unlike simple composite nanoparticles, the structure is shown in PI-ZnO to be like the skeleton of a tree for the growth of MoS "leaves" as macro-materials with controlled microstructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!