The amyloid precursor protein (APP), a central molecule in Alzheimer's disease (AD), has physiological roles in cell adhesion and signaling, migration, neurite outgrowth and synaptogenesis. Intracellular adapter proteins mediate the function of transmembrane proteins. Fe65 (also known as APBB1) is a major APP-binding protein. Regulated intramembrane proteolysis (RIP) by γ-secretase releases the APP intracellular domain (AICD), together with the interacting proteins, from the membrane. We studied the impact of the Fe65 family (Fe65, and its homologs Fe65L1 and Fe65L2, also known as APBB2 and APBB3, respectively) on the nuclear signaling function of the AICD. All Fe65 family members increased amyloidogenic processing of APP, generating higher levels of β-cleaved APP stubs and AICD. However, Fe65 was the only family member supporting AICD translocation to nuclear spots and its transcriptional activity. Using a recently established transcription assay, we dissected the transcriptional activity of Fe65 and provide strong evidence that Fe65 represents a transcription factor. We show that Fe65 relies on the lysine acetyltransferase Tip60 (also known as KAT5) for nuclear translocation. Furthermore, inhibition of APP cleavage reduces nuclear Tip60 levels, but this does not occur in Fe65-knockout cells. The rate of APP cleavage therefore regulates the nuclear translocation of AICD-Fe65-Tip60 (AFT) complexes, to promote transcription by Fe65.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.242917 | DOI Listing |
FASEB J
November 2022
School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China.
Neurite outgrowth is a fundamental process in neurons that produces extensions and, consequently, neural connectivity. Neurite damage and atrophy are observed in various brain injuries and disorders. Understanding the intrinsic pathways of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration.
View Article and Find Full Text PDFOpen Biol
September 2022
School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China.
ADP-ribosylation factor 6 (ARF6) is a small GTPase that has a variety of neuronal functions including stimulating neurite outgrowth, a crucial process for the establishment and maintenance of neural connectivity. As impaired and atrophic neurites are often observed in various brain injuries and neurological diseases, understanding the intrinsic pathways that stimulate neurite outgrowth may provide insights into developing strategies to trigger the reconnection of injured neurons. The neuronal adaptor FE65 has been shown to interact with ARF6 and potentiate ARF6-mediated neurite outgrowth.
View Article and Find Full Text PDFCells
June 2021
Division of Human Biology and Human Genetics, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany.
The scaffolding protein family Fe65, composed of Fe65, Fe65L1, and Fe65L2, was identified as an interaction partner of the amyloid precursor protein (APP), which plays a key function in Alzheimer's disease. All three Fe65 family members possess three highly conserved interaction domains, forming complexes with diverse binding partners that can be assigned to different cellular functions, such as transactivation of genes in the nucleus, modulation of calcium homeostasis and lipid metabolism, and regulation of the actin cytoskeleton. In this article, we rule out putative new intracellular signaling mechanisms of the APP-interacting protein Fe65 in the regulation of actin cytoskeleton dynamics in the context of various neuronal functions, such as cell migration, neurite outgrowth, and synaptic plasticity.
View Article and Find Full Text PDFFASEB J
December 2020
School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China.
Ras-related C3 botulinum toxin substrate 1 (Rac1) is a member of the Rho family of GTPases that functions as a molecular switch to regulate many important cellular events including actin cytoskeleton remodeling during neurite outgrowth. Engulfment and cell motility 1 (ELMO1)-dedicator of cytokinesis 1 (DOCK180) is a bipartite guanine nucleotide exchange factor (GEF) complex that has been reported to activate Rac1 on the plasma membrane (PM). Emerging evidence suggests that the small GTPase ADP ribosylation factor 6 (ARF6) activates Rac1 via the ELMO1/DOCK180 complex.
View Article and Find Full Text PDFJ Cell Sci
September 2020
Institute for Regenerative Medicine - IREM, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952 Schlieren - Zurich, Switzerland
The amyloid precursor protein (APP), a central molecule in Alzheimer's disease (AD), has physiological roles in cell adhesion and signaling, migration, neurite outgrowth and synaptogenesis. Intracellular adapter proteins mediate the function of transmembrane proteins. Fe65 (also known as APBB1) is a major APP-binding protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!