In recent years, cell therapy technologies have resulted in impressive results in hematologic malignancies. Treatment of solid tumors with chimeric antigen receptor T-cells (CAR-T) has been less successful. Solid tumors present challenges not encountered with hematologic cancers, including high intra-tumoral pressure and ineffective CAR-T trafficking to the site of disease. Novel delivery methods may enable CAR-T therapies for solid tumor malignancies. A patient with liver metastases secondary to pancreatic adenocarcinoma received CAR-T targeting carcinoembryonic antigen (CEA). Previously we reported that Pressure-Enabled Drug Delivery (PEDD) enhanced CAR-T delivery to liver metastases 5.2-fold. Three doses of anti-CEA CAR-T were regionally delivered via hepatic artery infusion (HAI) using PEDD technology to optimize the therapeutic index. Interleukin-2 was systemically delivered by continuous intravenous infusion to support CAR-T in vivo. HAI of anti-CEA CAR-T was not associated with any serious adverse events (SAEs) above grade 3 and there were no on-target/off-tumor SAEs. Following CAR-T treatment, positron emission tomography-CT demonstrated a complete metabolic response within the liver, which was durable and sustained for 13 months. The response was accompanied by normalization of serum tumor markers and an abundance of CAR+ cells found within post-treatment tumor specimens. The findings from this report exhibit biologic activity and safety of regionally infused CAR-T for an indication with limited immune-oncology success to date. Further studies will determine how HAI of CAR-T may be included in multidisciplinary treatment plans for patients with liver metastases. ClinicalTrials.gov number, NCT02850536.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449487PMC
http://dx.doi.org/10.1136/jitc-2020-001097DOI Listing

Publication Analysis

Top Keywords

car-t
12
anti-cea car-t
12
liver metastases
12
drug delivery
8
solid tumors
8
hitm-sure hepatic
4
hepatic immunotherapy
4
metastases
4
immunotherapy metastases
4
metastases phase
4

Similar Publications

Immune deficits after CD19 chimeric antigen receptor (CAR) T-cell therapy can be long-lasting, predisposing patients to infections and non-relapse mortality. In B-cell non-Hodgkin lymphoma (B-NHL), the prognostic impact of immune reconstitution (IR) remains ill-defined, and detailed cross-product comparisons have not been performed to date. In this retrospective observational study, we longitudinally characterized lymphocyte subsets and immunoglobulin levels in 105 B-NHL patients to assess patterns of immune recovery arising after CD19 CAR-T.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.

View Article and Find Full Text PDF

Background: Multiple myeloma (MM) is an incurable plasma cell malignancy with increasing global incidence. Chimeric antigen receptor (CAR) T-cell therapy targeting BCMA has shown efficacy in relapsed or refractory MM, but it faces resistance due to antigen loss and the tumor microenvironment. Bispecific T-cell engaging (BITE) antibodies also encounter clinical challenges, including short half-lives requiring continuous infusion and potential toxicities.

View Article and Find Full Text PDF

Background: Relapsed/refractory classic Hodgkin lymphoma (R/R cHL) remains challenging to treat, and anti-CD30 chimeric antigen receptor T (CAR-T) cell therapy may be effective. This meta-analysis investigates the efficacy and safety of anti-CD30 CAR-T cell therapy for treating R/R cHL.

Methods: A systematic literature search of PubMed, Cochrane, Embase, ClinicalTrials.

View Article and Find Full Text PDF

Background And Hypothesis: Teclistamab, a novel bispecific monoclonal antibody targeting CD3 and B-cell maturation antigen (BCMA), and chimeric antigen receptor T-cell (CAR-T) therapy are promising options for treating relapsed/refractory multiple myeloma (MM). However, the rates of acute kidney injury (AKI) associated with teclistamab remain inadequately characterized. This study aims to compare the incidence, severity, and outcomes of AKI between patients receiving teclistamab and CAR-T therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!