Neuropsychiatric phenotypes have long been known to be influenced by heritable risk factors, directly confirmed by the past decade of genetic studies that have revealed specific genetic variants enriched in disease cohorts. However, the initial hope that a small set of genes would be responsible for a given disorder proved false. The more complex reality is that a given disorder may be influenced by myriad small-effect noncoding variants and/or by rare but severe coding variants, many de novo. Noncoding genomic sequences-for which molecular functions cannot usually be inferred-harbor a large portion of these variants, creating a substantial barrier to understanding higher-order molecular and biological systems of disease. Fortunately, novel genetic technologies-scalable oligonucleotide synthesis, RNA sequencing, and CRISPR (clustered regularly interspaced short palindromic repeats)-have opened novel avenues to experimentally identify biologically significant variants en masse. Massively parallel reporter assays (MPRAs) are an especially versatile technique resulting from such innovations. MPRAs are powerful molecular genetics tools that can be used to screen thousands of untranscribed or untranslated sequences and their variants for functional effects in a single experiment. This approach, though underutilized in psychiatric genetics, has several useful features for the field. We review methods for assaying putatively functional genetic variants and regions, emphasizing MPRAs and the opportunities they hold for dissection of psychiatric polygenicity. We discuss literature applying functional assays in neurogenetics, highlighting strengths, caveats, and design considerations-especially regarding disease-relevant variables (cell type, neurodevelopment, and sex), and we ultimately propose applications of MPRA to both computational and experimental neurogenetics of polygenic disease risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7938388 | PMC |
http://dx.doi.org/10.1016/j.biopsych.2020.06.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!