Plant architecture and disease resistance are the key factors that control the production of yield. However, the mechanism behind these factors is largely unknown. In this study, we identified that () was obviously induced by inoculation of AG1-IA. Plants that overexpressed were more susceptible, while mutants showed a similar response to sheath blight disease compared with wild-type plants. Interestingly, plants developed a wider tiller angle and exhibited altered shoot gravitropism, while knock-out mutants showed no visible morphological differences compared with the wild-type plants. is ubiquitously expressed in different tissues and stages, and the transcript was induced by exogenously applied auxin. Expression of the and genes was altered in compared with wild-type plants. Furthermore, plants are sensitive to auxin and the polar auxin transporter inhibitor N-1-naphthylphalamic acid (NPA). Further yeast-one hybrid, chromatin immunoprecipitation (ChIP) and transient assays revealed that IDD3 directly represses via promoter binding. Inoculation with indicated that plants are more susceptible to sheath blight disease (ShB) compared with the wild-type. Taken together, our analyses suggest that controls plant architecture and the resistance of rice to ShB via the regulation of auxin transporter genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588189PMC
http://dx.doi.org/10.1080/15592324.2020.1809847DOI Listing

Publication Analysis

Top Keywords

compared wild-type
16
sheath blight
12
wild-type plants
12
resistance rice
8
plant architecture
8
blight disease
8
auxin transporter
8
plants
7
indeterminate domain
4
domain negatively
4

Similar Publications

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Phytoene synthase (PSY) is one of key enzymes in carotenogenesis that catalyze two molecules of geranylgeranyl diphosphate to produce phytoene. PSY is widespread in bacteria, archaea, and eukaryotes. Currently, functional role and catalytic mechanism of archaeal PSY homologues have not been fully clarified due to the limited reports.

View Article and Find Full Text PDF

SCN10A gene polymorphism is associated with pain sensitivity and postoperative analgesic effects in patients undergoing gynecological laparoscopy.

Eur J Med Res

January 2025

Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, 401147, China.

Background: Postoperative pain intensity is influenced by various factors, including genetic variations. The SCN10A gene encodes the Nav1.8 sodium channel protein, which is crucial for pain signal transmission in peripheral sensory neurons.

View Article and Find Full Text PDF

Genetic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit of mice results in behavioral deficits linked to the prefrontal cortex (PFC). rs16969968 is the primary Single Nucleotide Polymorphism (SNP) in CHRNA5 strongly associated with nicotine dependence and schizophrenia in humans. We performed single cell-electrophysiology combined with morphological reconstructions on layer 6 (L6) excitatory neurons in the medial PFC (mPFC) of wild type (WT) rats, rats carrying the human coding polymorphism rs16969968 in Chrna5 and α5 knockout (KO) rats.

View Article and Find Full Text PDF

Pyridoxal 5'-phosphate (PLP)-dependent enzymes are involved in many cellular processes and possess unequalled catalytic versatility. Rational design through site-directed mutagenesis is a powerful strategy for creating tailor-made enzymes for a wide range of biocatalytic applications. PLP-dependent methionine γ-lyase (MGL), which degrades sulfur-containing amino acids, is an encouraging enzyme for many therapeutic purposes - from combating bacterial resistant strains and fungi to antitumor activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!