A corporate feeding antenna array with parasitic patches has been investigated previously for millimeter-wave applications due to its high gain and wide bandwidth. However, the parasitic patch integration in the uniformly powered and spaced patch antenna array led to a high sidelobe level (SLL). In this study, we designed a non-uniformly powered and spaced corporate feeding network to feed a 12-element parasitic patch-integrated microstrip antenna array for SLL reduction at 28 GHz in the millimeter-wave band. In the power divider, we arranged two one-to-six unequally feeding power dividers from the opposite side to feed 12 antenna elements with non-uniform excitation, and effectively controlled the spacing between antenna elements. The two opposite input ports from the power divider were fed 180° out-of-phase for good isolation between the adjacent antenna elements. To verify the SLL reduction effect from the non-uniform spacing in the array, we designed two non-uniformly powered patch antenna arrays with uniform and non-uniform spacing. In the measurement, the non-uniformly powered and spaced patch antenna array demonstrated a nearly 16.56 dBi boresight gain and -17.27 dB SLL, which is nearly 2 dB lower than the uniformly spaced counterpart. Finally, we expect that the non-uniformly powered and spaced high gain patch antenna array with a low SLL will be suitable for millimeter-wave communication applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506691PMC
http://dx.doi.org/10.3390/s20174753DOI Listing

Publication Analysis

Top Keywords

antenna array
24
non-uniformly powered
20
powered spaced
20
patch antenna
16
corporate feeding
12
power divider
12
antenna elements
12
antenna
10
spaced corporate
8
feeding power
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!