Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504413 | PMC |
http://dx.doi.org/10.3390/ijms21176052 | DOI Listing |
Clin Mol Hepatol
December 2024
Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden.
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global epidemic. MASLD has a strong genetic component, and a common missense variant (rs2642438) in the mitochondrial amidoxime-reducing component 1 (MARC1) gene confers protection against its onset and severity. However, there are contrasting results regarding the mechanisms entangling this protection.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
December 2024
Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA 94720-3140.
The Lactate Shuttle concept has revolutionized our understanding and study of metabolism in physiology, biochemistry, metabolism, nutrition, and medicine. Seminal findings of the Mitochondrial Lactate Oxidation Complex (mLOC) elucidated the architectural structure of its components. Here, we report that the mitochondrial pyruvate carrier (mPC) is an additional member of the mLOC in mouse muscle and C2C12 myoblasts and myotubes.
View Article and Find Full Text PDFMol Med
December 2024
Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
Pancreatic diseases pose considerable health challenges due to their complex etiology and limited therapeutic options. Mitochondrial uncoupling protein 2 (UCP2), highly expressed in pancreatic tissue, participates in numerous physiological processes and signaling pathways, indicating its potential relevance in these diseases. Despite this, UCP2's role in acute pancreatitis (AP) remains underexplored, and its functions in chronic pancreatitis (CP) and pancreatic steatosis are largely unknown.
View Article and Find Full Text PDFCell Death Dis
December 2024
Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
In recent years, targeting mitochondrial apoptosis has emerged as a promising therapeutic strategy for Acute Myeloid Leukemia (AML). The SLC25 family of mitochondrial carriers plays a critical role in maintaining mitochondrial function and regulating apoptosis. However, the role of SLC25A21, an oxodicarboxylate carrier, in AML progression and its potential as a prognostic biomarker remain underexplored.
View Article and Find Full Text PDFAquat Toxicol
December 2024
Marine College, Shandong University, Weihai, Shandong 264209, China. Electronic address:
The growing body of scientific evidence suggests that micro- and nanoplastics (MPs/NPs) pose a significant threat to aquatic ecosystems and human health. These particles can enter organisms through ingestion, inhalation, dermal contact, and trophic transfer. Exposure can directly affect multiple organs and systems (respiratory, digestive, neurological, reproductive, urinary, cardiovascular) and activate extensive intracellular signaling, inducing cytotoxicity involving mechanisms such as membrane disruption, extracellular polymer degradation, reactive oxygen species (ROS) production, DNA damage, cellular pore blockage, lysosomal instability, and mitochondrial depolarization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!