A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effective treatment of levofloxacin wastewater by an electro-Fenton process with hydrothermal-activated graphite felt as cathode. | LitMetric

Effective treatment of levofloxacin wastewater by an electro-Fenton process with hydrothermal-activated graphite felt as cathode.

Environ Pollut

National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China.

Published: November 2020

The performance of the cathode significantly affects the ability of the electro-Fenton (EF) process to degrade chemicals. In this study, a simple method to modify the graphite felt (GF) cathode was proposed, i.e. oxidizing GF by hydrothermal treatment in nitric acid. The surface physical and electrochemical properties of modified graphite felt were characterized by several techniques: scanning electron microscope (SEM), water contact angle, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and linear scanning voltammetry (LSV). Compared with an unmodified GF (GF-0), the oxygen reduction reaction (ORR) activity of a modified GF was significantly improved due to the introduction of more oxygen-containing functional groups (OGs). Furthermore, the results showed that GF was optimally modified after 9 h (GF-9) of treatment. As an example, the HO generation by GF-9 was 2.26 times higher than that of GF-0. After optimizing the process parameters, which include the initial Fe concentration and current density, the apparent degradation rate constant of levofloxacin (LEV) could reach as high as 0.40 min. Moreover, the total organic carbon (TOC) removal rate and mineralization current efficiency (MCE) of the modified cathode were much higher than that of the GF-0. Conclusively, GF-9 is a promising cathode for the future development in organic pollutant removal via EF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.115348DOI Listing

Publication Analysis

Top Keywords

graphite felt
12
electro-fenton process
8
felt cathode
8
higher gf-0
8
cathode
5
effective treatment
4
treatment levofloxacin
4
levofloxacin wastewater
4
wastewater electro-fenton
4
process hydrothermal-activated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!