Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, an improved recurrent neural network (RNN) scheme is proposed to perform the trajectory control of redundant robot manipulators using remote center of motion (RCM) constraints. Firstly, learning by demonstration is implemented to model the surgical operation skills in the Cartesian space. After that, considering the kinematic constraints associated with the optimization control of redundant manipulators, we propose a novel RNN-based approach to facilitate accurate task tracking based on the general quadratic performance index, which includes managing the constraints on RCM joint angle, and joint velocity, simultaneously. The results of the conducted theoretical analysis confirm that the RCM constraint has been established successfully, and accordingly. The corresponding end-effector tracking errors asymptotically converge to zero. Finally, demonstration experiments are conducted in a laboratory setup environment using KUKA LWR4+ to validate the effectiveness of the proposed control strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2020.07.033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!