A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improved recurrent neural network-based manipulator control with remote center of motion constraints: Experimental results. | LitMetric

In this paper, an improved recurrent neural network (RNN) scheme is proposed to perform the trajectory control of redundant robot manipulators using remote center of motion (RCM) constraints. Firstly, learning by demonstration is implemented to model the surgical operation skills in the Cartesian space. After that, considering the kinematic constraints associated with the optimization control of redundant manipulators, we propose a novel RNN-based approach to facilitate accurate task tracking based on the general quadratic performance index, which includes managing the constraints on RCM joint angle, and joint velocity, simultaneously. The results of the conducted theoretical analysis confirm that the RCM constraint has been established successfully, and accordingly. The corresponding end-effector tracking errors asymptotically converge to zero. Finally, demonstration experiments are conducted in a laboratory setup environment using KUKA LWR4+ to validate the effectiveness of the proposed control strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2020.07.033DOI Listing

Publication Analysis

Top Keywords

improved recurrent
8
recurrent neural
8
remote center
8
center motion
8
control redundant
8
neural network-based
4
network-based manipulator
4
control
4
manipulator control
4
control remote
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!