Objectives: The purpose of the study was to evaluate the effects of the ratio of different concentrations of silane to 1 wt% 10-methacryloyloxydecyl dihydrogenphosphate (MDP) in primer on the performance and durability of bonding to silica-based and zirconia ceramics.
Methods: Phosphoric acid-treated lithium-disilicate (LD) and alumina-blasted zirconia specimens were assigned to five groups according to surface chemical treatment with different concentrations of γ-methacryloxypropyltrimethoxysilane (γ-MPTS) to 1 wt% MDP containing primer as follows: S0) without γ-MPTS; S1) 1 wt% γ-MPTS; S2) 2 wt% γ-MPTS; S5) 5 wt% γ-MPTS and S10) 10 wt% γ-MPTS. After priming, stainless-steel rods were bonded to the specimens with PanaviaV5 cement. Tensile bond strength (TBS) test was evaluated after 24-h (TC0) or 5000 thermocycling (TC5K). The wettability of primer-treated surfaces was measured using contact angle measurements. Surface elemental composition of zirconia was determined with X-ray photoelectron spectroscopy (XPS). The TBS data were analyzed using Weibull analysis. Contact angle data were analyzed by three-way analysis of variance (α = 0.05).
Results: Before thermocycling, S5 (34.3 ± 4.5 MPa) showed the highest TBS compared to S1 (27.8 ± 5.2 MPa) and S2 (29.7 ± 4.8 MPa), and insignificant difference with S10 (30.6 ± 6.2 MPa) in LD. For zirconia there was no significant difference in all silane containing primers with S0 (p > 0.05). Thermocycling decreased TBS for all experimental groups among both ceramics (p < 0.05). Contact angles increased in S5 and S10 for both LD and zirconia ceramics. XPS analysis revealed that phosphorous peak of MDP was detected after priming. Additionally, silica peak of γ-MPTS coexist with MDP in S5 on zirconia surface.
Significance: The bond strength of lithium-disilicate ceramics was improved with 5% γ-MPTS in MDP primer. Moreover, increasing percentage of γ-MPTS by more than 5% has not improved the bond strength, conversely, it can alter the long-term durability of the bonded ceramic. MDP primers alone are best suited for efficient bonding of resin cement with zirconia ceramic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2020.104026 | DOI Listing |
J Prosthet Dent
January 2025
Associate Professor, Department of Prosthodontics, Dental Branch, Islamic Azad University of Medical Sciences, Tehran, Iran.
Statement Of Problem: The optimal zirconia pretreatment, contingent upon the type of cement used, warrants further research.
Purpose: The purpose of this investigation was to evaluate the influence of various surface pretreatments on the bonding efficacy of cement to zirconia.
Material And Methods: A comprehensive search was conducted across the PubMed, Embase, Scopus, and Web of Science databases for in vitro studies related to bonding with zirconia up to April 2024, supplemented by a manual search.
Materials (Basel)
December 2024
Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Arnold-Heller-Straße 16, 24105 Kiel, Germany.
This study was conducted to evaluate the material properties of polymer-infiltrated zinc oxide networks (PICN) and the effect of using a phosphate monomer-containing primer applied before polymer infiltration. A total of 148 ZnO-network (zinc oxide) specimens were produced: = 74 were treated with a primer before polymer infiltration and light curing, while the remaining specimens were untreated. Each group was divided into two subgroups ( = 37) based on the infiltrating polymer: UDMA (aliphatic urethane-dimethacrylates)-TEGDMA (triethylene glycol-dimethacrylate) or BisGMA (bisphenol A-glycidyl-methacrylate)-TEGDMA.
View Article and Find Full Text PDFBraz Dent J
December 2024
Post-Graduate Program in Oral Sciences (Prosthodontics Unit), Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.
The aim of this study is to assess the presence of MDP at various stages of the bonding procedure, enhance the adhesive and mechanical behavior of cemented zirconia ceramics. Fifty ceramic slices (15 × 15 × 2 mm) and 48 discs (Ø= 10 mm, 1 mm thickness) were prepared, sintered, air-abraded with aluminum oxide, and allocated considering: 1) microshear bond strength (µSBS) between ceramic slices and luting agent cylinders (height= 1 mm, Ø= 1.2 mm); 2) fatigue behavior, ceramic discs paired and bonded onto fiber-epoxy resin discs (Ø= 10 mm, 2.
View Article and Find Full Text PDFClin Oral Investig
November 2024
Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8588, Japan.
Objectives: To assess the influence of different primer compositions-silane (S), 10-methacryloyloxydecyl dihydrogen phosphate (MDP), and the combination of silane and MDP (S + MDP)-on the bonding performance of MDP-free and MDP-containing resin cements to highly translucent zirconia.
Materials And Methods: Tribochemical silica-coated zirconia plates were pretreated with one of three experimental primers, S, MDP, or S + MDP, with untreated specimens serving as controls. Subsequently, these plates were bonded to stainless-steel rods using either two MDP-free or two MDP-containing resin cements.
Cureus
October 2024
Dentistry, Ministry of Health, Al Bahah, SAU.
The increasing use of zirconia in dental restorations necessitates a comprehensive understanding of effective bonding techniques to ensure long-term clinical success. Zirconia's unique chemical composition presents challenges in achieving a durable bond as it lacks the glass phase necessary for traditional etching and silanization processes. This review evaluates current methods and emerging innovations for enhancing zirconia bond strength to resin cements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!