Identification and functional characterization of natural resistance-associated macrophage protein 2 from sea cucumber Apostichopus japonicus.

Dev Comp Immunol

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China. Electronic address:

Published: January 2021

As a member of natural resistance-associated macrophage protein (Nramp) family, Nramp2 conservatively exists in the cell membrane across species and is essential for normal iron homeostasis in an H-dependent manner. Withholding available iron represents an important host defense strategy. However, the function of Nramp2 in response to invading pathogens is largely unknown in invertebrates. In this study, a unique echinoderm Nramp2 was identified from sea cucumber Apostichopus japonicus (designated as AjNramp2). The cDNA sequence of AjNramp2 was 2360 bp, with a putative open reading frame of 1713 bp, encoding a typical Nramp domain containing protein with 570 amino acid residues. Structural analysis revealed that AjNramp2 consisted of highly conserved helix regions similar with the human Nramp2. Spatial expression analysis revealed that AjNramp2 was ubiquitously expressed in all examined tissues, with the highest level found in the intestine. Immunohistochemistry assay showed that AjNramp2 was mainly located in the cellular membrane in coelomocytes. Vibrio splendidus challenge and lipopolysaccharide (LPS) stimulation could significantly promote the expression of AjNramp2, which was consistent with the cellular iron level in coelomocytes. Moreover, when the expression of AjNramp2 was knocked down by siRNA-AjNramp2, the cellular iron level was coordinately decreased in coelomocytes under LPS stimulation. Taken together, results indicated that AjNramp2 serves as an iron transport receptor to withhold available iron and may contribute to the nutritional immunity defense system of sea cucumber.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2020.103835DOI Listing

Publication Analysis

Top Keywords

sea cucumber
12
natural resistance-associated
8
resistance-associated macrophage
8
macrophage protein
8
cucumber apostichopus
8
apostichopus japonicus
8
ajnramp2
8
analysis revealed
8
revealed ajnramp2
8
lps stimulation
8

Similar Publications

Preparation and Characterization of Calcium-Chelated Sea Cucumber Ovum Hydrolysate and the Inhibitory Effect on α-Amylase.

Foods

December 2024

Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian 116600, China.

α-amylase can effectively inhibit the activity of digestive enzymes and alter nutrient absorption. The impact of ovum hydrolysates of sea cucumbers on α-amylase activity was investigated in this study. The protein hydrolysates generated using different proteases (pepsin, trypsin, and neutral protease) and molecular weights (less than 3000 and more than 3000) were investigated.

View Article and Find Full Text PDF

Thermal Behavior of Tropical Sea Cucumber of : Preliminary Issues.

Animals (Basel)

December 2024

Departamento de Acuicultura, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, B.C., Mexico.

We investigated the growth, preferences, and thermal resistance of the sea cucumber to understand its thermal biology. Sixty individuals were kept in tanks at two temperatures (23 °C and 26 °C) for 30 days to determine their favorable maintenance temperature. Their survival rates and specific growth rates were measured to establish their ideal conditioning temperature in the laboratory.

View Article and Find Full Text PDF

Autophagy mediated by ROS-AKT-FoxO pathway is required for intestinal regeneration in echinoderms.

Cell Commun Signal

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.

Autophagy is essential for maintaining material balance and energy circulation and plays a critical role as a regulatory mechanism in tissue regeneration. However, current studies primarily describe this phenotype, with limited exploration of its molecular mechanisms. In this study, we provided the first evidence that autophagy is required for intestinal regeneration in Apostichopus japonicus and identified a previously unrecognized regulatory mechanism involved in this process.

View Article and Find Full Text PDF

Identification of two novel α-amylase inhibitory activity peptide from Russian sea cucumber body wallprotein hydrolysate.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China. Electronic address:

This study aimed to identify novel α-amylase inhibitory peptides from Russian sea cucumbers and elucidate their inhibitory mechanisms. Among the 52 identified sea cucumber peptide (SCP), two peptides with potential α-amylase inhibitory activity, FPSPPLVA (SCP1) and GPPMPPPPLP (SCP2), were selected from the sequences researched. The results showed that both SCP1 and SCP2 exhibited α-amylase inhibitory activity with IC of 0.

View Article and Find Full Text PDF

Characterization and film-forming properties of collagen from three species of sea cucumber from the South China Sea: Emphasizing the effect of transglutaminase.

Int J Biol Macromol

January 2025

College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China. Electronic address:

This study aimed to investigate the structural characteristics of Stichopus horrens collagen (SHC), Holothuria scabra collagen (HSC), and Holothuria leucospilota collagen (HLC) and to assess the effect of transglutaminase (TGase) on their film-forming properties. The results indicated that the collagens from three species of sea cucumbers were type I collagen with a complete triple helical structure. The thermal denaturation temperature of HLC (34.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!