In the present study, we introduced cholesterol (CLO)-conjugated bovine serum albumin nanoparticles (BSA NPs) as a new system for indirect targeting drug delivery. Tamoxifen, as an anticancer drug, was loaded on BSA NPs (BSA-TAX NPs); CLO was then conjugated to the BSA-TAX NPs surface for the targeted delivery of NPs system, by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxy succinimide carbodiimide chemistry (CLO-BSA-TAX NPs). The physicochemical properties, toxicity, in vitro, and in vivo biocompatibility of the BSA NPs system were characterized on cancer cell lines (4T1). The results revealed that the BSA NPs system has a regular spherical shape and negative zeta-potential values. The drug release of BSA NPs system has shown controlled and pH-dependent drug release behavior. BSA NPs system was biocompatible but it was potentially toxic on the cancer cell line. The CLO-BSA-TAX NPs exhibited higher toxicity against cancer cell lines than other NPs formulation (BSA NPs and BSA-TAX NPs). It can be concluded that the CLO, as an indirect targeting agent, enhances the toxicity and specificity of NPs system on cancer cell lines. It could potentially be suitable approaches to targeting the tumors in clinical cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.11455DOI Listing

Publication Analysis

Top Keywords

bsa nps
28
nps system
28
cancer cell
16
nps
15
bsa-tax nps
12
cell lines
12
bovine serum
8
serum albumin
8
albumin nanoparticles
8
system
8

Similar Publications

Nanomaterials that engage in well-defined and tunable interactions with proteins are pivotal for the development of advanced applications. Achieving a precise molecular-level understanding of nano-bio interactions is essential for establishing these interactions. However, such an understanding remains challenging and elusive.

View Article and Find Full Text PDF

An Albumin-Photosensitizer Supramolecular Assembly with Type I ROS-Induced Multifaceted Tumor Cell Deaths for Photodynamic Immunotherapy.

Adv Sci (Weinh)

January 2025

Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.

Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis.

View Article and Find Full Text PDF

There is a need for advanced developments to battle aggressive breast cancer variations and to address treatment resistance. In cancer therapy, ZnO nanoparticles (NPs) possess the ability to selectively and effectively induce apoptosis in cancer cells. There is an urgent necessity to create novel anti-cancer therapies, and recent studies indicate that ZnO nanoparticles have significant promise.

View Article and Find Full Text PDF

Tofacitinib (Tof), a commercially available pan-Janus kinases inhibitor, is approved for the treatment of moderate to severe ulcerative colitis. However, its clinical application is limited due to dose-dependent systemic side effects. The present study aims to develop an efficient oral colon-targeted drug delivery systems using prebiotic pectin (Pcn) and chitosan (Csn) polysaccharides as a shell, with Tof loaded into a Bovine Serum Albumin (BSA) core, and improving it with chondroitin sulfate (Chs), thus constructing Tof@BSA-Chs-CP nanoparticles (NPs).

View Article and Find Full Text PDF

In the current research, we developed a safe method using Iranian yarrow extract for the synthesis of silver nanoparticles (IY-AgNPs) as reducing and stabilizing agents in different conditions. The prepared and stabilized IY-AgNPs under optimal conditions were characterized using FT-IR, XRD, TEM, and UV-vis techniques. Also, the blood-clotting, hemolytic, antioxidant, bactericidal and, fungicidal properties, cytotoxicity effects and inhibition of protein denaturation efficiency of IY-AgNPs were assessed in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!