The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera; Aleyrodidae), and greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae), are highly problematic plant pests and virus vectors with worldwide distributions. Identification of whitefly species is typically accomplished by observation of distinct morphological characters; however, because of morphological inconsistency and indistinguishability, the discrimination of B. tabaci species variants is dependent on molecular techniques based on genetic differences. New assays were designed for the detection of B. tabaci A, B, and Q mitotype groups, and T. vaporariorum. Specific primer sets were designed for amplification of the mitochondrial cytochrome c oxidase I gene of the four targets to perform in end-point PCR, real-time PCR coupled to high-resolution melting analysis (HRM), and the isothermal helicase-dependent amplification (HDA). Primer specificities were validated using end-point PCR, then tested in HRM and HDA. Bemisia tabaci A, B, and Q mitotypes, and T. vaporariorum-targeted primer sets discriminately amplified specimens of different populations within their target whitefly group. These tests provide three novel discrimination assays for the high-consequence, exotic B. tabaci B and Q groups, along with the native B. tabaci A group and T. vaporariorum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jee/toaa180 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!