Schools in proximity to roadways expose students to traffic-related air pollution (TRAP). We investigate impacts of air-cleaning on indoor TRAP levels and indoor chemistry in a renovated school adjacent an interstate highway. We monitor air pollutants pre- and post-renovation and quantify efficiency of particle (MERV8 and 16 filters) and gas (functionalized activated carbon) air-cleaning. Time-resolved measurements show air-cleaning systems are effective, with in situ particle removal efficiency >94% across 10 nm to 10 μm. Activated carbon removed BTEX and NO with variability in removal efficiency. Over eight months of monitoring, NO removal efficiency was 96% initially and decreased to 61%; and BTEX removal efficiency was >80% or increased to >80%. Air-cleaning reduced indoor TRAP to below or near urban background. Air-cleaning systems suppressed indoor chemistry by reducing indoor levels of oxidants (NO, O) and reactive organics of indoor origin. When the air cleaning system was inactive, our data show that indoor SOA formation within the school was elevated. Loss rates of NO and O through the air-cleaning system were ∼1.5-2.4 h and ∼2.3 h, respectively. Air-cleaning was 83% and 69% efficient, respectively, in removing monoterpenes and isoprene. By suppressing precursors, scaling calculations show air-cleaning prevented ∼3.4 mg/h of indoor SOA formation due to indoor ozone-monoterpene chemistry. For comparison, we estimate that filtration removed ∼130 mg/h of PM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.0c02792 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China. Electronic address:
Degumming, a process of removing gummy substances surrounding fiber, plays a crucial role in preparing plant fibers. This study clearly clarified that the multiple degumming enzymes by Bacillus subtilis XW-18 acted as a decisive factor for driving bio-degumming process of raw pineapple leaves. Firstly, PCR analysis verified that B.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain.
The current study addresses the pressing issue of unsustainable water management, particularly in regions experiencing high water stress. It focuses on examining the viability of polymeric membranes composed of biobased materials, mainly chitosan, for various sustainable water management solutions. The membranes evaluated in the study were blends of PVC with either chitosan-silica or charcoal-silica, designed to enhance their functionality and performance.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:
Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing.
View Article and Find Full Text PDFTalanta
January 2025
Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China. Electronic address:
Due to synergistically enhanced separation and degradation performances, photocatalytic membranes offer an environmentally friendly and energy-sustainable method for water purification. However, a comprehensive review on preparation and application of photocatalytic membranes is still lacking. Systematically comparing different photocatalytic membrane fabrication methods and revealing the underlying mechanisms of their respective applications are of particular interest.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000 PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095 PR China; Institutes of Agricultural Science and Technology Development, Yangzhou 225127 Jiangsu, PR China.
In this work, UiO-66-l-cys with enhanced adsorption capacity for Hg(Ⅱ) in water was synthesized through a facile two-step partial ligand replacement strategy. The presence of the functional groups significantly enhanced the capacity of the material for Hg(Ⅱ). According to the Langmuir model, the maximum theoretical adsorption capacity was calculated to be 1321.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!