Recent studies have demonstrated a mechanism of embryonic yolk processing in lizards, snakes and turtles that differs markedly from that of birds. In the avian pattern, cells that line the inside of the yolk sac take up products of yolk digestion and deliver nutrients into the vitelline circulation. In contrast, in squamates and turtles, proliferating endodermal cells invade and fill the yolk sac cavity, forming elongated strands of yolk-filled cells that surround small blood vessels. This arrangement provides a means by which yolk material becomes cellularized, digested, and transported for embryonic use. Ultrastructural observations on late-stage Alligator mississippiensis eggs reveal elongated, vascular strands of endodermal cells within the yolk sac cavity. The strands of cells are intermixed with free yolk spheres and clumps of yolk-filled endodermal cells, features that reflect early phases in the yolk-processing pattern. These observations indicate that yolk processing in Alligator is more like the pattern of other reptiles than that of birds.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmor.21252DOI Listing

Publication Analysis

Top Keywords

yolk sac
12
endodermal cells
12
alligator mississippiensis
8
yolk
8
yolk processing
8
sac cavity
8
cells
6
crocodylian embryos
4
embryos process
4
process yolk?
4

Similar Publications

As a representative agent of bicyclic antidepressants, venlafaxine (VEN) has become widely used worldwide and is frequently detected in surface waters with concentrations ranging from ng/L to µg/L. To evaluate the toxicological effects of such medications on aquatic species, studies on environmentally relevant concentrations are essential. Zebrafish were used as a model organism to assess growth and development in larvae and examine tissue accumulation, oxidative stress, and DNA methylation in adults.

View Article and Find Full Text PDF

Identification of pennaceous barbule cell factor (PBCF), a novel gene with spatiotemporal expression in barbule cells during feather development.

Gene

January 2025

Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan. Electronic address:

Bird contour feathers exhibit a complex hierarchical structure composed of a rachis, barbs, and barbules, with barbules playing a crucial role in maintaining feather structure and function. Understanding the molecular mechanisms underlying barbule formation is essential for advancing our knowledge of avian biology and evolution. In this study, we identified a novel gene, pennaceous barbule cell factor (PBCF), using microarray analysis, RT-PCR, and in situ hybridization.

View Article and Find Full Text PDF

Reichert's membrane (RM) is a basement membrane of gigantic proportions that surrounds the mammalian embryo following implantation. It is part of the parietal yolk sac, which originates from the wall of the preimplantation blastocyst. RM persists from implantation to birth in rodents and analogous structures occur in other mammals, including primates.

View Article and Find Full Text PDF

Developmental and neurotoxic effects of dimethyl phthalate on zebrafish embryos and larvae.

Aquat Toxicol

January 2025

Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China. Electronic address:

Dimethyl phthalate (DMP) has been extensively utilized as a plasticizer on a global scale for many years. Its presence in the environment and its harmful effects on living organisms have raised concerns. This study aimed to examine its potential developmental neurotoxicity by utilizing zebrafish as a model.

View Article and Find Full Text PDF

Abamectin is an insecticide, miticide and nematicide that has been extensively used in agriculture for many years. The excessive use of abamectin inevitably pollutes water and soil and might even cause adverse effects on aquatic biota. However, it is currently unclear how abamectin exposure causes neurotoxicity in aquatic organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!