The type I interferons are central to a vast array of immunological functions. The production of these immune-modulatory molecules is initiated at the early stages of the innate immune responses and, therefore, plays a dominant role in shaping downstream events in both innate and adaptive immunity. Indeed, the major role of IFN-α/β is the induction of priming states, relevant for the functional differentiation of T lymphocyte subsets. Among T-cell subtypes, the CD4+CD25+Foxp3+ T regulatory cells (Tregs) represent a specialized subset of CD4+ T cells with a critical role in maintaining peripheral tolerance and immune homeostasis. Although the role of type I interferons in maintaining the function of thymus-derived Tregs has been previously described, the direct contribution of these innate factors to peripheral Treg (pTreg) and induced Treg (iTreg) differentiation and suppressive function is still unclear. We now show that, under tolerogenic conditions, IFN-α/β play a critical role in antigen-specific and also polyclonal naive CD4+ T-cell conversion into peripheral antigen-specific CD4+CD25+Foxp3+ Tregs and inhibit CD4+ T helper (Th) cell expansion in mice. While type I interferons sustain the expression and the activation of the transcription master regulators Foxp3, Stat3 and Stat5, these innate molecules reciprocally inhibit Th17 cell differentiation. Altogether, these results indicate a new pivotal role of IFN-α/β on pTreg differentiation and induction of peripheral tolerance, which may have important implications in the therapeutic control of inflammatory disorders, such as of autoimmune diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxaa058DOI Listing

Publication Analysis

Top Keywords

type interferons
16
cell differentiation
8
tolerogenic conditions
8
role ifn-α/β
8
critical role
8
peripheral tolerance
8
role
6
peripheral
5
differentiation
5
type
4

Similar Publications

Interferon-Stimulated Genes and Immune Metabolites as Broad-Spectrum Biomarkers for Viral Infections.

Viruses

January 2025

Center for Virus-Host-Innate-Immunity, Institute for Infectious and Inflammatory Diseases, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.

The type I interferon (IFN-I) response is a critical component of the immune defense against various viral pathogens, triggering the expression of hundreds of interferon-stimulated genes (ISGs). These ISGs encode proteins with diverse antiviral functions, targeting various stages of viral replication and restricting infection spread. Beyond their antiviral functions, ISGs and associated immune metabolites have emerged as promising broad-spectrum biomarkers that can differentiate viral infections from other conditions.

View Article and Find Full Text PDF

The first marine pestivirus, Phocoena pestivirus (PhoPeV), isolated from harbor porpoise, has been recently described. To further characterize this unique pestivirus, its host cell tropism and growth kinetics were determined in different cell lines. In addition, the interaction of PhoPeV with innate immunity in porcine epithelial cells and the role of selected cellular factors involved in the viral entry and RNA replication of PhoPeV were investigated in comparison to closely and distantly related pestiviruses.

View Article and Find Full Text PDF

HDAC6 Facilitates PRV and VSV Infection by Inhibiting Type I Interferon Production.

Viruses

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

HDAC6 modulates viral infection through diverse mechanisms. Here, we investigated the role of HDAC6 in influencing viral infection in pig cells with the aim of exploiting the potential antiviral gene targets in pigs. Using gene knockout and overexpression strategies, we found that HDAC6 knockout greatly reduced PRV and VSV infectivity, whereas HDAC6 overexpression increased their infectivity in PK15 cells.

View Article and Find Full Text PDF

Emerging Roles of TRIM56 in Antiviral Innate Immunity.

Viruses

January 2025

Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains.

View Article and Find Full Text PDF

Vesicular Stomatitis Virus (VSV) has emerged as a promising candidate for various clinical applications, including vaccine development, virus pseudotyping, and gene delivery. Its broad host range, ease of propagation, and lack of pre-existing immunity in humans make it ideal for therapeutic use. VSV's potential as an oncolytic virus has garnered attention; however, resistance to VSV-mediated oncolysis has been observed in some cell lines and tumor types, limiting its effectiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!