Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Voltage decay during cycling is still a major issue for Li-rich cathodes in lithium ion batteries. Recently, the increase of Ni content has been recognized as an effective way to mitigate this problem, although it leads to lower-capacity materials. To find a balance between voltage decay and high capacity, particles of Li-rich materials with concentration gradients of transition metals have been prepared. Since voltage decay is caused by oxygen loss and phase transition that occur mainly on the particle surface, the Ni content is designed with a negative gradient of concentration from the surface to the bulk of particles. To do so, microsized LiNiCoMnO particles are mixed with much smaller LiNiCoMnO particles to form deposits of small particles onto larger particles. The concentration gradient of Ni is achieved as the Ni ions in LiNiCoMnO penetrate into LiNiCoMnO during a calcination post-treatment. Gradient samples show superior cycling performance and voltage retention as well as improved safety. This systematic study explores a material model combining Li-rich and high-Ni layered cathodes that is shown to be effective in creating a balance between mitigated voltage decay and high energy density.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c10410 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!