A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Circadian vulnerability of cisplatin-induced ototoxicity in the cochlea. | LitMetric

The chemotherapeutic agent cisplatin is renowned for its ototoxic effects. While hair cells in the cochlea are established targets of cisplatin, less is known regarding the afferent synapse, which is an essential component in the faithful temporal transmission of sound. The glutamate aspartate transporter (GLAST) shields the auditory synapse from excessive glutamate release, and its loss of function increases the vulnerability to noise, salicylate, and aminoglycosides. Until now, the involvement of GLAST in cisplatin-mediated ototoxicity remains unknown. Here, we test in mice lacking GLAST the effects of a low-dose cisplatin known not to cause any detectable change in hearing thresholds. When administered at nighttime, a mild hearing loss in GLAST KO mice was found but not at daytime, revealing a potential circadian regulation of the vulnerability to cisplatin-mediated ototoxicity. We show that the auditory synapse of GLAST KO mice is more vulnerable to cisplatin administration during the active phase (nighttime) when compared to WT mice and treatment during the inactive phase (daytime). This effect was not related to the abundance of platinum compounds in the cochlea, rather cisplatin had a dose-dependent impact on cochlear clock rhythms only after treatment at nighttime suggesting that cisplatin can modulate the molecular clock. Our findings suggest that the current protocols of cisplatin administration in humans during daytime may cause a yet undetectable damage to the auditory synapse, more so in already damaged ears, and severely impact auditory sensitivity in cancer survivors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722206PMC
http://dx.doi.org/10.1096/fj.202001236RDOI Listing

Publication Analysis

Top Keywords

auditory synapse
12
cisplatin-mediated ototoxicity
8
glast mice
8
cisplatin administration
8
cisplatin
7
glast
5
circadian vulnerability
4
vulnerability cisplatin-induced
4
cisplatin-induced ototoxicity
4
ototoxicity cochlea
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!