Benign hepatosteatosis, affected by lipid uptake, de novo lipogenesis and fatty acid (FA) oxidation, progresses to non-alcoholic steatohepatitis (NASH) on stress and inflammation. A key macronutrient proposed to increase hepatosteatosis and NASH risk is fructose. Excessive intake of fructose causes intestinal-barrier deterioration and endotoxaemia. However, how fructose triggers these alterations and their roles in hepatosteatosis and NASH pathogenesis remain unknown. Here we show, using mice, that microbiota-derived Toll-like receptor (TLR) agonists promote hepatosteatosis without affecting fructose-1-phosphate (F1P) and cytosolic acetyl-CoA. Activation of mucosal-regenerative gp130 signalling, administration of the YAP-induced matricellular protein CCN1 or expression of the antimicrobial peptide Reg3b (beta) peptide counteract fructose-induced barrier deterioration, which depends on endoplasmic-reticulum stress and subsequent endotoxaemia. Endotoxin engages TLR4 to trigger TNF production by liver macrophages, thereby inducing lipogenic enzymes that convert F1P and acetyl-CoA to FA in both mouse and human hepatocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8018782 | PMC |
http://dx.doi.org/10.1038/s42255-020-0261-2 | DOI Listing |
J Adv Res
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China; Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China; Department of Pharmaceutical Sciences and Technology, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao 999078, China. Electronic address:
Introduction: Non-alcoholic fatty liver disease (NAFLD) acts as the primary contributor to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and potentially hepatocellular carcinoma. The flowers of Chrysanthemum indicum, a traditional edible medicinal herb, have been widely used in China for more than 2000 years. However, the function of C.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Department of Animal Science, Penn State University, University Park, 16802. Electronic address:
Diet-induced milk fat depression (MFD) caused by UFA, and low fiber diets results in an increase in alternate rumen biohydrogenation intermediates. The impact of these MFD-inducing diets on milk odd and branched chain fatty acids (OBCFA) is not well known. The first objective of this study was to characterize the time course of changes in OBCFA in milk fat during induction and recovery of MFD induced with a high UFA and low fiber diet in 3 separate experiments.
View Article and Find Full Text PDFRedox Biol
December 2024
Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain. Electronic address:
Dormant disseminated tumor cells (DTCs) remain viable for years to decades before establishing a clinically overt metastatic lesion. DTCs are known to be highly resilient and able to overcome the multiple biological hurdles imposed along the metastatic cascade. However, the specific metabolic adaptations of dormant DTCs remain to be elucidated.
View Article and Find Full Text PDFScience
January 2025
Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.
View Article and Find Full Text PDFCell Metab
January 2025
Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA. Electronic address:
De novo lipogenesis (DNL) is the process whereby cells synthesize fatty acids from acetyl-CoA, contributing to steatosis in fatty liver disease. Two new studies, using genetic mouse models, metabolomics, and pharmacology, identified alternative pathways in DNL and unexpected physiological effects when targeting key enzymes in this pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!