Salinity-independent dissipation of antibiotics from flooded tropical soil: a microcosm study.

Sci Rep

Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University Bonn, Nussallee 13, 53115, Bonn, Germany.

Published: August 2020

River deltas are frequently facing salinity intrusion, thus challenging agricultural production in these areas. One adaption strategy to increasing salinity is shrimp production, which however, heavily relies on antibiotic usage. This study was performed to evaluate the effect of increasing salinity on the dissipation rates of antibiotics in tropical flooded soil systems. For this purpose, paddy top soil from a coastal Vietnamese delta was spiked with selected frequently used antibiotics (sulfadiazine, sulfamethazine, sulfamethoxazole, trimethoprim) and incubated with flood water of different salt concentrations (0, 10, 20 g L). Antibiotic concentrations were monitored in water and soil phases over a period of 112 days using liquid chromatography and tandem mass spectrometry. We found that sulfamethazine was the most persistent antibiotic in the flooded soil system (DT = 77 days), followed by sulfadiazine (DT = 53 days), trimethoprim (DT = 3 days) and sulfamethoxazole (DT = 1 days). With the exception of sulfamethoxazole, the apparent distribution coefficient increased significantly (p < 0.05) for all antibiotics in course of the incubation, which indicates an accumulation of antibiotics in soil. On a whole system basis, including soil and water into the assessment, there was no overall salinity effect on the dissipation rates of antibiotics, suggesting that common e-fate models remain valid under varying salinity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7445273PMC
http://dx.doi.org/10.1038/s41598-020-70943-wDOI Listing

Publication Analysis

Top Keywords

increasing salinity
8
flooded soil
8
soil
5
salinity-independent dissipation
4
dissipation antibiotics
4
antibiotics flooded
4
flooded tropical
4
tropical soil
4
soil microcosm
4
microcosm study
4

Similar Publications

Microbial biotechnology employs techniques that rely on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments, and increase the excessive use of chemical fertilizers. The present study examined the promoting potential of bacterial isolates obtained from the rhizospheric soil and roots of the Asparagus officinalis cultivar UF-157 F2 in Viru, la Libertad, Peru.

View Article and Find Full Text PDF

Soil salinity poses a significant environmental challenge for the growth and development of blueberries. However, the specific mechanisms by which blueberries respond to salt stress are still not fully understood. Here, we employed a comprehensive approach integrating physiological, metabolomic, and transcriptomic analyses to identify key metabolic pathways in blueberries under salt stress.

View Article and Find Full Text PDF

Introduction: The salinization of coastal soils is a primary cause of global land degradation. The aim of this study was to evaluate the effect of organic amendment on the soil microbial community within a saline gradient.

Methods: The study was designed with five levels of electrical conductivity (EC): 0.

View Article and Find Full Text PDF

The apoplastic pH (pH) in plants is susceptible to environmental stimuli. However, the biological implications of pH variation have remained largely unknown. The universal stress phytohormone abscisic acid (ABA) as well as the major environmental stimuli drought and salinity were selected as representative cases to investigate how changes in pH relate to plant behaviors in Arabidopsis.

View Article and Find Full Text PDF

The increasing trend of salinization of agricultural lands represents a great threat to the growth of major crops. Hence, shedding light on the salt-tolerance capabilities of three environment-resilient medicinal species from the Apiaceae, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!