A homozygous mutation in the inositol monophosphatase 1 (IMPA1) gene was recently identified in nine individuals with severe intellectual disability (ID) and disruptive behavior. These individuals belong to the same family from Northeastern Brazil, which has 28 consanguineous marriages and 59 genotyped family members. IMPA1 is responsible for the generation of free inositol from de novo biosynthesis and recycling from inositol polyphosphates and participates in the phosphatidylinositol signaling pathway. To understand the role of IMPA1 deficiency in ID, we generated induced pluripotent stem cells (iPSCs) from patients and neurotypical controls and differentiated these into hippocampal dentate gyrus-like neurons and astrocytes. IMPA1-deficient neuronal progenitor cells (NPCs) revealed substantial deficits in proliferation and neurogenic potential. At low passage NPCs (P1 to P3), we observed cell cycle arrest, apoptosis, progressive change to a glial morphology and reduction in neuronal differentiation. These observations were validated by rescuing the phenotype with myo-inositol supplemented media during differentiation of patient-derived iPSCs into neurons and by the reduction of neurogenic potential in control NPCs-expressing shIMPA1. Transcriptome analysis showed that NPCs and neurons derived from ID patients have extensive deregulation of gene expression affecting pathways necessary for neurogenesis and upregulation of gliogenic genes. IMPA1 deficiency did not affect cell cycle progression or survival in iPSCs and glial progenitor cells or astrocyte differentiation. Therefore, this study shows that the IMPA1 mutation specifically affects NPC survival and neuronal differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-00862-9DOI Listing

Publication Analysis

Top Keywords

inositol monophosphatase
8
monophosphatase impa1
8
impa1 mutation
8
intellectual disability
8
impa1 deficiency
8
progenitor cells
8
neurogenic potential
8
cell cycle
8
neuronal differentiation
8
impa1
6

Similar Publications

The remobilization of stored assimilates from stems to seeds plays a pivotal role in augmenting barley yield, particularly under water stress conditions. This study examines the molecular mechanisms underlying stem reserve utilization by conducting a comparative analysis of the proteome and metabolome across three barley contrasting genotypes: Yousef, Morocco, and PBYT17. Evaluations were performed at 21 and 28 days after anthesis (DAA) under both water stress and control conditions.

View Article and Find Full Text PDF

Euryhaline fish experience variable osmotic environments requiring physiological adjustments to tolerate elevated salinity. Mozambique tilapia () possess one of the highest salinity tolerance limits of any fish. In tilapia and other euryhaline fish species, the -inositol biosynthesis (MIB) pathway enzymes, -inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1.

View Article and Find Full Text PDF

Lithium is an effective augmenting agent for depressed patients with inadequate response to standard antidepressant therapy, but numerous adverse effects limit its use. We previously reported that a lithium-mimetic agent, ebselen, promoted a positive emotional bias-an indicator of potential antidepressant activity in healthy participants. We therefore aimed to investigate the effects of short-term ebselen treatment on emotional processing and brain neurochemistry in depressed patients with inadequate response to standard antidepressants.

View Article and Find Full Text PDF

Effects of CRISPR/Cas9 targeting of the myo-inositol biosynthesis pathway on hyper-osmotic tolerance of tilapia cells.

Genomics

May 2024

Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA. Electronic address:

Myo-inositol is an important compatible osmolyte in vertebrates. This osmolyte is produced by the myo-inositol biosynthesis (MIB) pathway composed of myo-inositol phosphate synthase and inositol monophosphatase. These enzymes are among the highest upregulated proteins in tissues and cell cultures from teleost fish exposed to hyperosmotic conditions indicating high importance of this pathway for tolerating this type of stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!