In this work, we perform the numerical investigation of the performance of the small optical reservoir computing (RC) systems with four neurons using the commercial software for optical fiber communication system. The small optical RC system consists of the components of the optical fiber communication. The nonlinear function which is required in RC is provided by the erbium-doped optical fiber amplifiers (EDFA). We demonstrate that the EDFA should be operated in the saturated or non-linear regime to obtain a better performance of the small optical RC system. The performance of the small optical RC systems for different topological neuron structures is investigated. The results show that the interconnection between the neurons could offer a better performance than the systems without interconnection between the neurons. Moreover, the input signals with different noise levels are launched into the systems. The results show that the small optical RC system can classify the noisy input optical waveforms even when the signal-to-noise ratio is as low as - 2.55 dB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7445167PMC
http://dx.doi.org/10.1038/s41598-020-70775-8DOI Listing

Publication Analysis

Top Keywords

small optical
24
performance small
12
optical fiber
12
optical system
12
optical
10
fiber communication
8
better performance
8
interconnection neurons
8
small
6
impact coupling
4

Similar Publications

Fatty acid binding proteins (FABPs) are a class of small molecular mass intracellular lipid chaperone proteins that bind to hydrophobic ligands, such as long-chain fatty acids. FABP5 expression was significantly upregulated in the N-methyl-d-aspartic acid (NMDA) model, the microbead-induced chronic glaucoma model, and the DBA/2J mice. Previous studies have demonstrated that FABP5 can mediate mitochondrial dysfunction and oxidative stress in ischemic neurons, but the role of FABP5 in oxidative stress and cell death in retina NMDA injury models is unclear.

View Article and Find Full Text PDF

Microcapsule-Containing Self-Reporting Materials Based on Donor-acceptor Stenhouse Adducts.

ACS Macro Lett

January 2025

Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China.

The microcapsule-containing self-reporting system has attracted attention for its excellent characteristics in visualizing microdamage. In this study, we developed self-reporting materials based on the formation of donor-acceptor Stenhouse adducts (DASA) from microcapsules containing Meldrum's acid furfural conjugate (MAFC). Under mechanical force, MAFC is released from broken microcapsules and forms highly colored DASA with secondary amines in the matrix to indicate the small cracks or deformations.

View Article and Find Full Text PDF

Applications of Au Nanoclusters in Photon-Based Cancer Therapies.

Nanomaterials (Basel)

December 2024

Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.

Atomically precise gold nanoclusters (AuNCs) exhibit unique physical and optical properties, making them highly promising for targeted cancer therapy. Their small size enhances cellular uptake, facilitates rapid distribution to tumor tissues, and minimizes accumulation in non-target organs compared to larger gold nanoparticles. AuNCs, particularly Au, show significant potential in phototherapy, including photothermal (PTT), photodynamic (PDT), and radiation therapies.

View Article and Find Full Text PDF

There is a lack of research on the clinical characteristics of vitreomacular traction (VMT) in the Central Asian population, which evaluates the visual recovery and macular hole closure outcomes of pars plana vitrectomy (PPV) with membrane peel in this population. This long-term prospective cohort study, conducted at the Kazakh Eye Research Institute from June 2015 to December 2021 with a follow-up period until December 2022, included 1574 patients (1784 eyes) with VMT syndrome. Among the eyes, 724 (40.

View Article and Find Full Text PDF

The high responsivity and broad spectral sensitivity of organic photodetectors (OPDs) present a bright future of commercialization. However, the relatively high dark current density still limits its development. Herein, two novel nonpolar p-type conjugated small molecules, NSN and NSSN, are synthesized as interface layers to enhance the performance of the OPDs, which not only can tune energy alignments and increase the reverse charge injection barrier but also can reduce the interfacial trap density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!