Machine learning is a tool that allows machines or intelligent systems to learn and get equipped to solve complex problems in predicting reliable outcome. The learning process consists of a set of computer algorithms that are employed to a small segment of data with a view to speed up realistic interpretation from entire data without extensive human intervention. Here we present an approach of supervised learning based on artificial neural network to automate the process of delineating structural distribution of Mass Transport Deposit (MTD) from 3D reflection seismic data. The responses, defined by a set of individual attributes, corresponding to the MTD, are computed from seismic volume and amalgamated them into a hybrid attribute. This generated new attribute, called as MTD Cube meta-attribute, does not only define the subsurface architecture of MTD distinctly but also reduces the human involvement thereby accelerating the process of interpretation. The system, after being fully trained, quality checked and validated, automatically delimits the structural geometry of MTDs within the Karewa prospect in northern Taranaki Basin off New Zealand, where MTDs are evidenced.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7445243 | PMC |
http://dx.doi.org/10.1038/s41598-020-71088-6 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Geology and Mineral Science, Kwara State University, Malete, P.M.B. 1530, Ilorin, Kwara State, Nigeria.
Human-induced global warming, primarily attributed to the rise in atmospheric CO, poses a substantial risk to the survival of humanity. While most research focuses on predicting annual CO emissions, which are crucial for setting long-term emission mitigation targets, the precise prediction of daily CO emissions is equally vital for setting short-term targets. This study examines the performance of 14 models in predicting daily CO emissions data from 1/1/2022 to 30/9/2023 across the top four polluting regions (China, India, the USA, and the EU27&UK).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China.
The present study analyzed the impact of age on the causes of death (CODs) in patients with nasopharyngeal carcinoma (NPC) undergoing chemoradiotherapy (CRT) using machine learning approaches. A total of 2841 patients (1037 classified as older, ≥ 60 years and 1804 as younger, < 60 years) were enrolled. Variations in the CODs between the two age groups were analyzed before and after applying inverse probability of treatment weighting (IPTW).
View Article and Find Full Text PDFNat Commun
January 2025
Bioinformatics and computational systems biology of cancer, Institut Curie, Inserm U900, PSL Research University, Paris, France.
Immunotherapy is improving the survival of patients with metastatic non-small cell lung cancer (NSCLC), yet reliable biomarkers are needed to identify responders prospectively and optimize patient care. In this study, we explore the benefits of multimodal approaches to predict immunotherapy outcome using multiple machine learning algorithms and integration strategies. We analyze baseline multimodal data from a cohort of 317 metastatic NSCLC patients treated with first-line immunotherapy, including positron emission tomography images, digitized pathological slides, bulk transcriptomic profiles, and clinical information.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK.
Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying tumor tissues with a mesenchymal phenotype remains challenging in clinical practice. In this study, we validated the correlation between EMT status and resistance to endocrine therapy in ER+ breast cancer from a transcriptomic perspective.
View Article and Find Full Text PDFArch Bronconeumol
December 2024
National Koranyi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!