Food processing wears down teeth, thus affecting tooth functionality and evolutionary success. Other than intrinsic silica phytoliths, extrinsic mineral dust/grit adhering to plants causes tooth wear in mammalian herbivores. Dental microwear texture analysis (DMTA) is widely applied to infer diet from microscopic dental wear traces. The relationship between external abrasives and dental microwear texture (DMT) formation remains elusive. Feeding experiments with sheep have shown negligible effects of dust-laden grass and browse, suggesting that intrinsic properties of plants are more important. Here, we explore the effect of clay- to sand-sized mineral abrasives (quartz, volcanic ash, loess, kaolin) on DMT in a controlled feeding experiment with guinea pigs. By adding 1, 4, 5, or 8% mineral abrasives to a pelleted base diet, we test for the effect of particle size, shape, and amount on DMT. Wear by fine-grained quartz (>5/<50 µm), loess, and kaolin is not significantly different from the abrasive-free control diet. Fine silt-sized quartz (∼5 µm) results in higher surface anisotropy and lower roughness (polishing effect). Coarse-grained volcanic ash leads to significantly higher complexity, while fine sands (130 to 166 µm) result in significantly higher roughness. Complexity and roughness values exceed those from feeding experiments with guinea pigs who received plants with different phytolith content. Our results highlight that large (>95-µm) external silicate abrasives lead to distinct microscopic wear with higher roughness and complexity than caused by mineral abrasive-free herbivorous diets. Hence, high loads of mineral dust and grit in natural diets might be identified by DMTA, also in the fossil record.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486718PMC
http://dx.doi.org/10.1073/pnas.2008149117DOI Listing

Publication Analysis

Top Keywords

dental microwear
12
microwear texture
12
external abrasives
8
guinea pigs
8
mineral abrasives
8
abrasives
5
mineral
5
shape size
4
size quantity
4
quantity ingested
4

Similar Publications

Dietary breadth in kangaroos facilitated resilience to Quaternary climatic variations.

Science

January 2025

College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia.

Identifying what drove the late Pleistocene megafaunal extinctions on the continents remains one of the most contested topics in historical science. This is especially so in Australia, which lost 90% of its large species by 40,000 years ago, more than half of them kangaroos. Determining causation has been obstructed by a poor understanding of their ecology.

View Article and Find Full Text PDF

Dietary preferences of extant reptiles can be directly observed, whereas diet reconstruction of extinct species typically relies on morphological or dental features. More specific information about the ingested diet is contained in the chemistry of hard tissues. Stable isotopes of calcium and strontium show systematic fractionations between diet and skeletal bioapatite, which is applied for diet and trophic-level reconstructions of extant and extinct vertebrate species.

View Article and Find Full Text PDF

Dental impressions, developed for accurate capture of oral characteristics in human clinical settings, are seldom used in research on nonlivestock, nonprimate, and especially nonmammalian vertebrates due to a lack of appropriate tools. Studies of dentitions in most vertebrate species usually require euthanasia and specimen dissection, microCT and other scans with size and resolution tradeoffs, and/or ad-hoc individual impressions or removal of single teeth. These approaches prevent in-vivo studies that factor in growth and other chronological changes and separate teeth from the context of the whole mouth.

View Article and Find Full Text PDF

Dental microwear texture analysis (DMTA) is widely applied for inferring diet in vertebrates. Besides diet and ingesta properties, factors like wear stage and bite force may affect microwear formation, potentially leading to tooth position-specific microwear patterns. We investigated DMTA consistency along the upper cheek tooth row in young adult female rats at different growth stages, but with erupted adult dentitions.

View Article and Find Full Text PDF

A comprehensive dataset and image-set for exploring buccal dental microwear in late prehistory farming groups from northeastern Iberian Peninsula.

Data Brief

December 2024

Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca 3, 09002 Burgos, Spain.

This data article presents a comprehensive buccal dental microwear raw database, accompanied by all corresponding archaeological sample micrographs acquired through a ZEISS Axioscope A1 optical microscopy (OM). The dataset includes teeth specimens from 88 adult individuals, representing eight distinct groups spanning the Middle-Late Neolithic to the Middle Bronze Age from the northeastern Iberian Peninsula. These groups include Cova de l'Avi, Cova de Can Sadurní, Cova de la Guineu, Cova Foradada, Cova del Trader, Roc de les Orenetes, Cova del Gegant, and Cova dels Galls Carboners.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!