Modern food processing environment provides an ideal condition for biofilms formation by foodborne and spoilage microorganisms on different food contact surfaces. It is widely acknowledged that biofilm has become a serious problem in the food industry, as the biofilm growth mode induces microbial resistance to chemical disinfection. The persistence of biofilms after cleaning and disinfection procedures may result in foodborne illness and food spoilage, emphasizing the importance of preventing biofilms in food production facilities. The use of conventional disinfection technologies alone may not help to achieve the goal of producing safe food products with high quality. Hurdle technology provides a great option for the effective control of biofilms formed on food contact surfaces. Thus, a better understanding of biofilm behavior in response to different disinfectants, as well as seeking potential hurdle technologies to control biofilms are essential. In this review, we discuss the factors that influence the efficiency of disinfectants, and elaborate possible mechanisms which are behind the apparent high antimicrobial resistance of biofilms, and as well as mechanisms which are involved in effective hurdle technologies to control biofilms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408398.2020.1809345 | DOI Listing |
J Prosthet Dent
January 2025
Associate Professor, Department of Stomatology, The Fifth Affiliated Hospital of Sun Yat-sen University, Xiangzhou, Zhuhai City, Guangdong, PR China. Electronic address:
Statement Of Problem: Harmony between prostheses and periodontal tissues is essential. The presence of a fixed prosthesis has been reported to increase the risk of periodontal lesion onset in abutment teeth and to affect longevity. However, studies comparing the supragingival plaque biofilm on fixed prostheses and natural teeth are lacking.
View Article and Find Full Text PDFDent Mater
January 2025
Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, room 352, BC V6T-1Z3, Canada. Electronic address:
Objectives: This study aimed to assess the potential of experimental dental resins containing ZnO nanoparticles (ZnO-NPs) for antimicrobial photodynamic therapy (aPDT) as a functional tool for the modulation of cariogenic biofilm in long-term.
Methods: Minimum inhibitory and bactericidal concentrations (MIC/MBC) of ZnO-NPs against Streptococcus mutans were initially determined under different energy densities of blue LED irradiation (0.00, 1.
Front Cell Infect Microbiol
January 2025
College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China.
Abortusequi ( Abortusequi) is the primary cause of abortions in equine animals, and can cause serious foodborne illness. Thus, effective biocontrol strategies are needed to decontaminate and control the emergence of foodborne diseases. In recent years, phages have been used as a new strategy for modulating foodborne pathogens and food safety.
View Article and Find Full Text PDFUnlabelled: Despite recent advances, the regulation of anticancer and antimicrobial bioactive compound (AABC) production by leukocytes remains poorly understood. Here, we demonstrate that inactivation of the DNA- and RNA-based Teazeled receptors of the Universal Receptive System in human leukocytes generated so called "Leukocyte-Tells," which showed enhanced AABC production. Comprehensive analysis of the AABCs produced by Leukocyte-Tells based on LC/MS identified 707 unique or differentially produced peptide or non-peptide metabolites.
View Article and Find Full Text PDFBMC Womens Health
January 2025
Department of Obstetrics and Gynecology, University Clinic of Bern, Friedbuehlstrasse 19, Bern, 3010, Switzerland.
Background: Bacterial vaginosis (BV) is a prevalent vaginal condition among reproductive-age women, characterized by off-white, thin vaginal discharge with a fishy odor. It increases susceptibility to sexually transmitted diseases (STDs) and pelvic inflammatory disease (PID). BV involves a shift in vaginal microbiota, with reduced lactobacilli and increased anaerobic bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!