An approach to the interpretation of clinical data on the tumour control probability-dose relationship.

Radiother Oncol

Institut Gustave Roussy, Unité INSERM 247, Villejuif, France.

Published: March 1988

A conventional statistical model allows predicting the sterilisation rate as a function of dose. However, the computation requires data on biological parameters (proportion of clonogenic cells, survival per fraction, multiplication rate) which are inaccessible for human tumours. The curative dose 50% (TCD50) can be used as a synthesis of these parameters and its significance for the response-dose relationship of a population of tumours of uniform radiosensitivity is discussed. The slope of the dose-control curve provides vital information regarding the variation in radiocurability of the various individual tumours. The model allows the analysis of the clinical data and the separation of tumour subsets with different radiation responsiveness. It provides an evaluation of the benefit which could be obtained from the identification of the subsets and a guidance for the clinical, pathological and biological studies which relate to this identification. The change in the response-dose relationships with the tumour size cannot (usually) be explained by the cell number increase alone. Other possible factors of reduced radiocurability are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0167-8140(88)90006-0DOI Listing

Publication Analysis

Top Keywords

clinical data
8
model allows
8
approach interpretation
4
interpretation clinical
4
data tumour
4
tumour control
4
control probability-dose
4
probability-dose relationship
4
relationship conventional
4
conventional statistical
4

Similar Publications

Objectives: To incorporate a longitudinal palliative care curriculum into obstetrics and gynecology (Ob-Gyn) residency that could become standardized to ensure competencies in providing end of life (EOL) care.

Methods: This was a prospective cohort study conducted among 23 Ob-Gyn residents at a tertiary training hospital from 2021 to 2022. A curriculum intervention was provided via lecture and simulation.

View Article and Find Full Text PDF

Wastewater Monitoring During the COVID-19 Pandemic in the Veneto Region, Italy: Longitudinal Observational Study.

JMIR Public Health Surveill

January 2025

Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Via Loredan 18, Padova, Italy, 39 049 8275384.

Background: As the COVID-19 pandemic has affected populations around the world, there has been substantial interest in wastewater-based epidemiology (WBE) as a tool to monitor the spread of SARS-CoV-2. This study investigates the use of WBE to anticipate COVID-19 trends by analyzing the correlation between viral RNA concentrations in wastewater and reported COVID-19 cases in the Veneto region of Italy.

Objective: We aimed to evaluate the effectiveness of the cumulative sum (CUSUM) control chart method in detecting changes in SARS-CoV-2 concentrations in wastewater and its potential as an early warning system for COVID-19 outbreaks.

View Article and Find Full Text PDF

Deep learning-based design and experimental validation of a medicine-like human antibody library.

Brief Bioinform

November 2024

Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.

Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).

View Article and Find Full Text PDF

Lipoprotein(a) Atherosclerotic Cardiovascular Disease Risk Score Development and Prediction in Primary Prevention From Real-World Data.

Circ Genom Precis Med

January 2025

Mary and Steve Wen Cardiovascular Division, Department of Medicine, University of California, Los Angeles. (W.F., N.D.W.).

Background: Lp(a; Lipoprotein[a]) is a predictor of atherosclerotic cardiovascular disease (ASCVD); however, there are few algorithms incorporating Lp(a), especially from real-world settings. We developed an electronic health record (EHR)-based risk prediction algorithm including Lp(a).

Methods: Utilizing a large EHR database, we categorized Lp(a) cut points at 25, 50, and 75 mg/dL and constructed 10-year ASCVD risk prediction models incorporating Lp(a), with external validation in a pooled cohort of 4 US prospective studies.

View Article and Find Full Text PDF

Objective: This study investigated the psychometric properties of the Arabic version of the Adult Self-Report Scale-5 (the ASRS-5-AR) within a large sample of adults residing in Saudi Arabia.

Methods: This cross-sectional study applied the ASRS-5-AR to a random sample of 4,299 Saudi and non-Saudi adults, aged 19 to 66 years (31.16 ± 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!