The novel coronavirus disease 2019 (COVID-19) is a global epidemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). SARS-CoV-2 has a similar structure to severe acute respiratory syndrome coronavirus-1(SARS-CoV-1). The S protein on the surface of the virus is cleaved by host proprotein convertases (PCs) to expose the active N-terminal S1 extracellular domain. Its receptors are angiotensin-converting enzyme 2 (ACE2), and the C-terminal S2 membrane anchoring protein is responsible for translocating the virus into the cell. Among patients with COVID-19, there is a higher prevalence of cardiovascular disease, and more than 7% of patients have suffered myocardial damage due to the infection, but the internal mechanism is still poorly understood. There is currently no specific and effective targeted treatment. Reduction of the patient's morbidity and mortality is an urgent problem that needs to be solved clinically. By exploring the theoretical analysis of PCs and ACE2 in COVID-19 cardiovascular susceptibility, some insights on how to prevent and alleviate adverse cardiovascular prognosis have been provided in this study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352091 | PMC |
http://dx.doi.org/10.1007/s42399-020-00400-2 | DOI Listing |
JAMA Netw Open
January 2025
Department of Medicine, Harvard Medical School, Boston, Massachusetts.
Importance: Disease characteristics of genetically mediated coronary artery disease (CAD) on coronary angiography and the association of genomic risk with outcomes after coronary angiography are not well understood.
Objective: To assess the angiographic characteristics and risk of post-coronary angiography outcomes of patients with genomic drivers of CAD: familial hypercholesterolemia (FH), high polygenic risk score (PRS), and clonal hematopoiesis of indeterminate potential (CHIP).
Design, Setting, And Participants: A retrospective cohort study of 3518 Mass General Brigham Biobank participants with genomic information who underwent coronary angiography was conducted between July 18, 2000, and August 1, 2023.
Pediatr Cardiol
January 2025
Arkansas Children's Hospital, Arkansas Children's Hospital, 1 Children's Way, Slot 512-3, Little Rock, AR, 72202, USA.
Patent ductus arteriosus (PDA) stenting is a vital intervention for neonates with ductal-dependent blood flow, offering an attractive alternative to surgical shunt placement. Despite its benefits, the procedure poses risks such as ductal spasm, branch pulmonary artery compromise, and pseudoaneurysm formation. This report presents two complex neonatal cases with distinct outcomes.
View Article and Find Full Text PDFJ Trauma Acute Care Surg
January 2025
Division of Pediatric General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
J Trauma Acute Care Surg
January 2025
From the Department of Surgery, Westchester Medical Center, New York Medical College, Valhalla, NY.
Background: Extracorporeal membrane oxygenation (ECMO) has emerged as a critical intervention in the management of patients with trauma-induced cardiorespiratory failure. This study aims to compare outcomes in patients with severe thoracic injuries with and without venovenous extracorporeal membrane oxygenation (VV-ECMO).
Methods: We performed a retrospective cohort study on Trauma Quality Improvement Program (2017-2021) and included all patients with isolated blunt thoracic injuries with Abbreviated Injury Scale score of ≥4 who required intubation.
J Trauma Acute Care Surg
January 2025
From the Division of Acute Care Surgery, Department of Surgery (E.R.M., T.B.M., C.M.W., H.S., R.H., C.D.B.), University of Nebraska Medical Center, Omaha, Nebraska; Department of Surgery (H.B.M.), AdventHealth Porter; Department of Surgery (E.E.M., J.G.C.), Ernest E Moore Shock Trauma Center at Denver Health, Denver; Department of Surgery (E.E.M.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; Hunter College (I.M.B.), New York, New York; Sauaia Statistical Solutions, LLC (A.S.), Denver, Colorado; and Department of Cellular and Integrative Physiology (F.I.G., C.D.B.), University of Nebraska Medical Center, Omaha, Nebraska.
Background: Tissue-plasminogen activator-challenged thromboelastography (tPA-TEG) predicts massive transfusion and mortality better than conventional rapid thromboelastography (rTEG), with little concordance between their lysis values (LY30). We hypothesized that the main fibrinolytic inhibitors plasminogen activator inhibitor-1 (PAI-1) and α-2 antiplasmin (A2AP), as well as markers of fibrinolytic activation (plasmin-antiplasmin [PAP], tPA-PAI-1 complex, tPA activity), would correlate more strongly with tPA-TEG versus rTEG LY30 and may explain the recent findings of four distinct fibrinolytic phenotypes in trauma based on these two TEG methodologies.
Methods: Adult trauma patients (n = 56) had tPA-TEG, rTEG, and plasma obtained on arrival to the emergency department with institutional review board approval.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!