Technology advancements have a rapid effect on every field of life, be it medical field or any other field. Artificial intelligence has shown the promising results in health care through its decision making by analysing the data. COVID-19 has affected more than 100 countries in a matter of no time. People all over the world are vulnerable to its consequences in future. It is imperative to develop a control system that will detect the coronavirus. One of the solution to control the current havoc can be the diagnosis of disease with the help of various AI tools. In this paper, we classified textual clinical reports into four classes by using classical and ensemble machine learning algorithms. Feature engineering was performed using techniques like Term frequency/inverse document frequency (TF/IDF), Bag of words (BOW) and report length. These features were supplied to traditional and ensemble machine learning classifiers. Logistic regression and Multinomial Naïve Bayes showed better results than other ML algorithms by having 96.2% testing accuracy. In future recurrent neural network can be used for better accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325639PMC
http://dx.doi.org/10.1007/s41870-020-00495-9DOI Listing

Publication Analysis

Top Keywords

machine learning
12
ensemble machine
8
learning based
4
based approaches
4
approaches detecting
4
detecting covid-19
4
covid-19 clinical
4
clinical text
4
text data
4
data technology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!