Using 3H-labeled luteinizing hormone-releasing hormone (LHRH) at low concentrations, the in vitro proteolytic inactivation of the peptide hormone by whole rat ovaries was studied and compared with that by the soluble and particulate rat ovarian fraction. Whole rat ovaries were found to express the three proteolytic activities that were, according to their properties, also observed in rat ovarian homogenates: (1) soluble intracellular activity which was released into the medium, (2) released activity of membrane-bound origin, and (3) firmly membrane-bound activity. It is suggested that in vivo LHRH is largely inactivated extracellularly at least by enzymes that are located in the plasma membrane although the membrane-bound activity comprises only about 1% of the whole LHRH-inactivating capacity of the ovary.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0196-9781(88)90003-4DOI Listing

Publication Analysis

Top Keywords

proteolytic inactivation
8
luteinizing hormone-releasing
8
hormone-releasing hormone
8
hormone lhrh
8
rat ovaries
8
rat ovarian
8
membrane-bound activity
8
rat
5
inactivation luteinizing
4
lhrh rat
4

Similar Publications

Biochemical features and biotechnological potential of a proteolytic extract from a psychrophilic Antarctic bacterium.

Braz J Microbiol

January 2025

Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, Uruguay.

Proteases are hydrolases that act on peptide bonds, releasing amino acids and/or oligopeptides, and are involved in essential functions in all organisms. They represent an important segment of the global enzyme market, with applications in the food, leather, detergent, and pharmaceutical industries. Depending on their industrial use, proteases should exhibit high activity under extreme conditions, such as low temperatures, e.

View Article and Find Full Text PDF

Type 3 deiodinase activation mediated by the Shh/Gli1 axis promotes sepsis-induced metabolic dysregulation in skeletal muscles.

Burns Trauma

January 2025

Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China.

Background: Non-thyroidal illness syndrome is commonly observed in critically ill patients, characterized by the inactivation of systemic thyroid hormones (TH), which aggravates metabolic dysfunction. Recent evidence indicates that enhanced TH inactivation is mediated by the reactivation of type 3 deiodinase (Dio3) at the tissue level, culminating in a perturbed local metabolic equilibrium. This study assessed whether targeted inhibition of Dio3 can maintain tissue metabolic homeostasis under septic conditions and explored the mechanism behind Dio3 reactivation.

View Article and Find Full Text PDF

Uncovering the naturally occurring covalent inhibitors of SARS-CoV-2 M from the Chinese medicine sappanwood and deciphering their synergistic anti-M effects.

J Ethnopharmacol

January 2025

Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014. Electronic address:

Ethnopharmacological Relevance: The Chinese medicine sappanwood is primarily sourced from the dried heartwood of the medicinal plant Caesalpinia sappan Linn., which has been found with a variety of valuable properties including anti-inflammatory, anti-oxidant, and anti-viral effects. Preliminary investigations have demonstrated that sappanwood showed strong anti-SARS-CoV-2 M effects, but the key constituents responsible for SARS-CoV-2 M inhibition and their anti-M mechanisms have not been uncovered.

View Article and Find Full Text PDF

There is an ever-increasing demand for novel plant proteins that are non-allergenic, nutritionally complete, adequately functional, and can be sustainably sourced. RuBisCo is a protein that fulfills these requirements and can be sourced from alfalfa (Medicago sativa). Therefore, this study investigated several techniques to adequately extract alfalfa protein.

View Article and Find Full Text PDF

Porphyromonas gingivalis (Pg) is a keystone pathogen in periodontitis, a highly prevalent disease manifested by chronic inflammation of the periodontium, alveolar bone resorption and tooth loss. During periodontitis pathobionts such as Pg can enter the bloodstream and growing evidence correlates periodontitis with increased risk of cardiovascular and neurodegenerative diseases. However, the mechanism by which immune cells respond to Pg challenge in vivo remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!