Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We consider a retail firm selling a durable product in a volatile market where the demand is price-sensitive and random but its distribution is unknown. The firm dynamically replenishes inventory and adjusts prices over time and learns about the demand distribution. Assuming that the demand model is of the multiplicative form and unmet demand is partially backlogged, we take the empirical Bayesian approach to formulate the problem as a stochastic dynamic program. We first identify a set of regularity conditions on demand models and show that the state-dependent base-stock list-price policy is optimal. We next employ the dimensionality reduction approach to separate the scale factor that captures observed demand information from the optimal profit function, which yields a normalized dynamic program that is more tractable. We also analyze the effect of demand learning on the optimal policy using the system without Bayesian update as a benchmark. We further extend our analysis to the case with unobserved lost sales and the case with additive demand.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434394 | PMC |
http://dx.doi.org/10.1016/j.cor.2020.105078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!