Antioxidant activity and mechanism of dihydrochalcone C-glycosides: Effects of C-glycosylation and hydroxyl groups.

Phytochemistry

Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China. Electronic address:

Published: November 2020

Dihydrochalcones (DHCs), an important subgroup of flavonoids, have recently received much attention due to their diverse biological activities. In contrast to their O-glycosides, understanding of the antioxidant property and mechanism of DHC C-glycosides remains limited. Herein, the free radical scavenging activity and mechanism of two representative C-glycosyl DHCs, aspalathin (ASP) and nothofagin (NOT) as well as their aglycones, 3-hydroxyphloretin (HPHL) and phloretin (PHL) were evaluated using the density functional theory (DFT) calculations. The results revealed the crucial role of sugar moiety on the conformation and the activity. The o-dihydroxyl in the B-ring and the 2',6'-dihydroxyacetophenone moiety were found significant in determining the activity. Our results showed that hydrogen atom transfer (HAT) is the dominant mechanism for radical-trapping in the gas and benzene phases, while the sequential proton loss electron transfer (SPLET) is more preferable in the polar environments. Also, the results revealed the feasibility of the double HAT and double SPLET as well as the SPLHAT mechanisms, which provide alternative pathways to trap radical for the studied DHCs. These results could deepen the understanding of the antiradical activity and mechanism of DHCs, which will facilitate the design of novel efficient antioxidants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2020.112393DOI Listing

Publication Analysis

Top Keywords

activity mechanism
12
mechanism
5
antioxidant activity
4
mechanism dihydrochalcone
4
dihydrochalcone c-glycosides
4
c-glycosides effects
4
effects c-glycosylation
4
c-glycosylation hydroxyl
4
hydroxyl groups
4
groups dihydrochalcones
4

Similar Publications

Salicylic acid mitigates the physiological and biochemistry toxicity of fungicide difenoconazole and reduces its accumulation in wheat (Triticum aestivum L.).

Plant Physiol Biochem

January 2025

Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China. Electronic address:

Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood.

View Article and Find Full Text PDF

Salinization is a significant global issue causes irreversible damage to plants by reducing osmotic potential, inhibiting seed germination, and impeding water uptake. Seed germination, a crucial step towards the seedling stage is regulated by several hormones and genes, with the balance between abscisic acid and gibberellin being the key mechanism that either promotes or inhibits this process. Additionally, mucilage, a gelatinous substance, is known to provide protection against drought, herbivory, soil adhesion, and seed sinking.

View Article and Find Full Text PDF

Insights into NEK2 inhibitors as antitumor agents: From mechanisms to potential therapeutics.

Eur J Med Chem

January 2025

Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification.

View Article and Find Full Text PDF

Repurposing the familiar: Future treatment options against chronic kidney disease.

J Pharm Pharmacol

January 2025

Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, 333031, Rajasthan, India.

Objectives: Chronic kidney disease (CKD) is a serious health issue with rising morbidity and mortality rates. Despite advances in understanding its pathophysiology, effective therapeutic options are limited, necessitating innovative treatment approaches. Also, current frontline treatments that are available against CKD are not uniformly effective and often come with significant side effects.

View Article and Find Full Text PDF

Objective.: There is a growing consensus that interpersonal processes are key to understanding psychotherapy. How might that be reflected in the brain? Recent research proposes that inter-brain synchrony is a crucial neural component of interpersonal interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!