Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While new chemicals have replaced major toxic legacy contaminants such as polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT), knowledge of their current levels and biomagnification potential in Baltic Sea biota is lacking. Therefore, a suite of chemicals of emerging concern, including organophosphate esters (OPEs), short-chain, medium-chain and long-chain chlorinated paraffins (SCCPs, MCCPs, LCCPs), halogenated flame retardants (HFRs), and per- and polyfluoroalkyl substances (PFAS), were analysed in blue mussel (Mytilus edulis), viviparous eelpout (Zoarces viviparus), Atlantic herring (Clupea harengus), grey seal (Halichoerus grypus), harbor seal (Phoca vitulina), harbor porpoise (Phocoena phocoena), common eider (Somateria mollissima), common guillemot (Uria aalge) and white-tailed eagle (Haliaeetus albicilla) from the Baltic Proper, sampled between 2006 and 2016. Results were benchmarked with existing data for legacy contaminants. The mean concentrations for ΣOPEs ranged from 57 to 550 ng g lipid weight (lw), for ΣCPs from 110 to 640 ng g lw for ΣHFRs from 0.42 to 80 ng g lw, and for ΣPFAS from 1.1 to 450 ng g wet weight. Perfluoro-4-ethylcyclohexanesulfonate (PFECHS) was detected in most species. Levels of OPEs, CPs and HFRs were generally similar or higher than those of polybrominated diphenyl ethers (PBDEs) and/or hexabromocyclododecane (HBCDD). OPE, CP and HFR concentrations were also similar to PCBs and DDTs in blue mussel, viviparous eelpout and Atlantic herring. In marine mammals and birds, PCB and DDT concentrations remained orders of magnitude higher than those of OPEs, CPs, HFRs and PFAS. Predator-prey ratios for individual OPEs (0.28-3.9) and CPs (0.40-5.0) were similar or somewhat lower than those seen for BDE-47 (5.0-29) and HBCDD (2.4-13). Ratios for individual HFRs (0.010-37) and PFAS (0.15-47) were, however, of the same order of magnitude as seen for p,p'-DDE (4.7-66) and CB-153 (31-190), indicating biomagnification potential for many of the emerging contaminants. Lack of toxicity data, including for complex mixtures, makes it difficult to assess the risks emerging contaminants pose. Their occurence and biomagnification potential should trigger risk management measures, particularly for MCCPs, HFRs and PFAS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2020.106037 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!