Hurdle processing of turbid fruit juices involving encapsulated citral and vanillin addition and UV-C treatment.

Int J Food Microbiol

Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Argentina. Electronic address:

Published: November 2020

The aim of this study was to evaluate a hurdle strategy for orange-tangerine (OT) and orange-banana-mango-kiwi-strawberry (OBMKS) juices processing based on UV-C treatment assisted or not by mild heat and the addition of natural antimicrobials. Vanillin and citral emulsions were successfully encapsulated using maltodextrin and HI-CAP (5,18,3) and characterized. The susceptibility of Lactobacillus plantarum ATCC 8014, Escherichia coli ATCC 25922, and Saccharomyces cerevisiae KE 162 to binary mixtures of the encapsulated agents was examined in culture media according to the Berenbaum experimental design. The boundary between growth and non-growth as a function of vanillin and citral concentrations was predicted by means of the probabilistic model using logistic regression. Microbial inactivation achieved by pilot-scale UV-C light (0-390 mJ/cm) on its own, assisted by mild heat (50 °C, UV-C/H) and combined with antimicrobials (1000 ppm vanillin plus 100 ppm citral) addition (UV-C + A/UV-C/H + A) was assessed in OT and OBMKS. Yeast induced damage in a model solution treated by UV-C + A was studied by flow cytometry (FC). All the antimicrobial mixtures resulted in additive effects (FIC = 1), thus offering through the probabilistic models a range of formulation possibilities with antimicrobial capacity encompassing lower vanillin and citral concentrations compared to those required when used alone (V = 0-1875 ppm plus C = 392-0 ppm). UV-C led up to 3.7-3.8, 2.4-3.6 and 1.5-1.6 log-reductions of E. coli, L. plantarum and S. cerevisiae in OT and OBMKS, respectively. A significant increase of 1.7-2.2, 2.1-2.7 and 4.1-5.3 log cycles in microbial inactivation was observed after UV-C/H treatment. Additional inactivation of 0.7-3.1 and 0.5-2.7 log reductions were observed for E. coli and S. cerevisiae, respectively, when UV-C + A and UV-C/H + A were applied in both juices. Therefore, the addition of antimicrobials to the UV-C treated juices, showed additive to synergistic effects on E. coli and S. cerevisiae, respectively along refrigerated storage. A shift from yeast cells with intact membrane and esterase activity in control samples to cells with permeabilized membrane in C + A, UV-C and UV-C + A samples were determined by FC. The shift was more noticeable in UV-C + A samples. Sublethally damaged cells were only detected in C + A and UV-C samples. This study demonstrates that combining a pilot-scale UV-C treatment with the addition of chosen binary mixtures of vanillin and citral, can ensure more than 5 log-reductions of E. coli, L. plantarum and S. cerevisiae in OT and OBKMS juice blends.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2020.108811DOI Listing

Publication Analysis

Top Keywords

vanillin citral
16
uv-c treatment
12
uv-c
8
assisted mild
8
mild heat
8
binary mixtures
8
citral concentrations
8
microbial inactivation
8
pilot-scale uv-c
8
log-reductions coli
8

Similar Publications

The aroma transformation of Japanese sea bass (Lateolabrax japonicas) through endogenous enzyme incubation during the lag phase of attached microorganisms.

Food Chem

January 2025

Department of Food Science, Nutrition and Packaging, Clemsin University, Clemsin City of South Carolina 29631, USA Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA.

Endogenous enzymes play a crucial role in determining fish product aroma. However, the attached microorganisms can promote enzyme production, making it challenging to identify specific aromatic compounds resulting from endogenous enzymes. Thus, we investigated the aroma transformation of Japanese sea bass through enzymatic incubation by controlling attached microorganisms during the lag phase.

View Article and Find Full Text PDF

Olfaction modulates cortical arousal independent of perceived odor intensity and pleasantness.

Neuroimage

October 2024

State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; Chinese Institute for Brain Research, Beijing 102206, China. Electronic address:

Throughout history, various odors have been harnessed to invigorate or relax the mind. The mechanisms underlying odors' diverse arousal effects remain poorly understood. We conducted five experiments (184 participants) to investigate this issue, using pupillometry, electroencephalography, and the attentional blink paradigm, which exemplifies the limit in attentional capacity.

View Article and Find Full Text PDF

In order to curb asphalt fume emissions during the heating process of styrene-butadiene-styrene (SBS) asphalt, three aldehyde modifiers [vanillin (X), citral (N) and amyl cinnamaldehyde (J)] were blended into SBS-modified asphalt to prepare aldehyde-modified asphalt in this paper. By collecting solid particles and volatile organic compounds (VOCs) in asphalt fumes to conduct relevant experiments, we have analyzed the fume suppression effect and suppression mechanism of aldehyde modified asphalt, and finally examined the road performance of aldehyde modifiers with the best fume suppression effect. It was found that the average VOCs concentration of aldehyde modified asphalt was reduced by about 78 % after 30 min.

View Article and Find Full Text PDF

A screening identifies harmine as a novel antibacterial compound against .

Front Microbiol

September 2023

Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China.

, the causal agent of bacterial wilt, is a devastating plant pathogenic bacterium that infects more than 450 plant species. Until now, there has been no efficient control strategy against bacterial wilt. In this study, we screened a library of 100 plant-derived compounds for their antibacterial activity against .

View Article and Find Full Text PDF

Cyclodextrin-based Schiff base pro-fragrances: Synthesis and release studies.

Beilstein J Org Chem

September 2022

Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), UR 4492 SFR Condorcet FR CNRS 3417, Université du Littoral-Côte d'Opale (ULCO), Dunkerque, France.

A simple method for the preparation of β-cyclodextrin derivatives containing covalently bonded aldehydes via an imine bond was developed and used to prepare a series of derivatives from 6-amino-6-deoxy-β-cyclodextrin and the following volatile aldehydes - cinnamaldehyde, cyclamen aldehyde, lilial, benzaldehyde, anisaldehyde, vanillin, hexanal, heptanal, citral, and 5-methylfurfural. Subsequently, the rate of release of the volatile compound from selected pro-fragrances, as a function of the environment (solvent, pH), was studied by H NMR spectroscopy (for benzaldehyde) and static headspace-gas chromatography (for benzaldehyde, heptanal, and 5-methylfurfural). The aldehyde release rate from the imine was shown to depend substantially on the pH from the solution and the air humidity from the solid state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!