Purpose: Simultaneous multi-slice (SMS) imaging accelerates MRI data acquisition by exciting multiple image slices with a single radiofrequency pulse. Overlapping slices encoded in acquired signal are separated using a mathematical model, which requires estimation of image reconstruction kernels using calibration data. Several parameters used in SMS reconstruction impact the quality and fidelity of final images. Therefore, finding an optimal set of reconstruction parameters is critical to ensure that accelerated acquisition does not significantly degrade resulting image quality.
Methods: Gradient-echo echo planar imaging data were acquired with a range of SMS acceleration factors from a cohort of five volunteers with no known neurological pathology. Images were collected using two available phased-array head coils (a 48-channel array and a reduced diameter 32-channel array) that support SMS. Data from these coils were identically reconstructed offline using a range of coil compression factors and reconstruction kernel parameters. A hybrid space (k-x), externally-calibrated coil-by-coil slice unaliasing approach was used for image reconstruction. The image quality of the resulting reconstructed SMS images was assessed by evaluating correlations with identical echo-planar reference data acquired without SMS. A finger tapping functional MRI (fMRI) experiment was also performed and group analysis results were compared between data sets reconstructed with different coil compression levels.
Results: Between the two RF coils tested in this study, the 32-channel coil with smaller dimensions clearly outperformed the larger 48-channel coil in our experiments. Generally, a large calibration region (144-192 samples) and small kernel sizes (2-4 samples) in k direction improved image quality. Use of regularization in the kernel fitting procedure had a notable impact on the fidelity of reconstructed images and a regularization value 0.0001 provided good image quality. With optimal selection of other hyperparameters in the hybrid space SMS unaliasing algorithm, coil compression caused small reduction in correlation between single-band and SMS unaliased images. Similarly, group analysis of fMRI results did not show a significant influence of coil compression on resulting image quality.
Conclusions: This study demonstrated that the hyperparameters used in SMS reconstruction need to be fine-tuned once the experimental factors such as the RF receive coil and SMS factor have been determined. A cursory evaluation of SMS reconstruction hyperparameter values is therefore recommended before conducting a full-scale quantitative study using SMS technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mri.2020.08.006 | DOI Listing |
Oral Maxillofac Surg
January 2025
Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
Purpose: This study aimed to clarify the applicability of smartphone-based three-dimensional (3D) surface imaging for clinical use in oral and maxillofacial surgery, comparing two smartphone-based approaches to the gold standard.
Methods: Facial surface models (SMs) were generated for 30 volunteers (15 men, 15 women) using the Vectra M5 (Canfield Scientific, USA), the TrueDepth camera of the iPhone 14 Pro (Apple Inc., USA), and the iPhone 14 Pro with photogrammetry.
J Med Imaging (Bellingham)
January 2025
Siemens Healthineers AG, Forchheim, Germany.
Purpose: Digital breast tomosynthesis (DBT) has been introduced more than a decade ago. Studies have shown higher breast cancer detection rates and lower recall rates, and it has become an established imaging method in diagnostic settings. However, full-field digital mammography (FFDM) remains the most common imaging modality for screening in many countries, as it delivers high-resolution planar images of the breast.
View Article and Find Full Text PDFNeural Netw
December 2024
Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:
Brain magnetic resonance imaging (MRI) has been extensively employed across clinical and research fields, but often exhibits sensitivity to site effects arising from non-biological variations such as differences in field strength and scanner vendors. Numerous retrospective MRI harmonization techniques have demonstrated encouraging outcomes in reducing the site effects at image level. However, existing methods generally suffer from high computational requirements and limited generalizability, restricting their applicability to unseen MRIs.
View Article and Find Full Text PDFJ Magn Reson Imaging
December 2024
Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA.
Background: Modified Look-Locker imaging (MOLLI) T1 mapping sequences are acquired during breath-holding and require ECG gating with consistent R-R intervals, which is problematic for patients with atrial fibrillation (AF). Consequently, there is a need for a free-breathing and ungated framework for cardiac T1 mapping.
Purpose: To develop and evaluate a free-breathing ungated radial simultaneous multi-slice (SMS) cardiac T1 mapping (FURST) framework.
Aesthetic Plast Surg
December 2024
Department of Plastic, Reconstructive and Maxillo facial Surgery, Henri Mondor Hospital, University Paris XII, 51 Avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France.
Introduction: Striae distensae (SD) appear clinically as parallel striae, lying perpendicular to the tension lines of the skin. SD evolve into two clinical phases, an initial inflammatory phase in which they are called "striae rubrae" (SR) and a chronic phase in which they are called striae albae (SA). This study investigates the synergistic effect of nanofat and platelet-rich plasma (PRP) injections on collagen production in fibroblasts derived from SA (SAF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!