The application of deep learning for automated segmentation (delineation of boundaries) of histologic primitives (structures) from whole slide images can facilitate the establishment of novel protocols for kidney biopsy assessment. Here, we developed and validated deep learning networks for the segmentation of histologic structures on kidney biopsies and nephrectomies. For development, we examined 125 biopsies for Minimal Change Disease collected across 29 NEPTUNE enrolling centers along with 459 whole slide images stained with Hematoxylin & Eosin (125), Periodic Acid Schiff (125), Silver (102), and Trichrome (107) divided into training, validation and testing sets (ratio 6:1:3). Histologic structures were manually segmented (30048 total annotations) by five nephropathologists. Twenty deep learning models were trained with optimal digital magnification across the structures and stains. Periodic Acid Schiff-stained whole slide images yielded the best concordance between pathologists and deep learning segmentation across all structures (F-scores: 0.93 for glomerular tufts, 0.94 for glomerular tuft plus Bowman's capsule, 0.91 for proximal tubules, 0.93 for distal tubular segments, 0.81 for peritubular capillaries, and 0.85 for arteries and afferent arterioles). Optimal digital magnifications were 5X for glomerular tuft/tuft plus Bowman's capsule, 10X for proximal/distal tubule, arteries and afferent arterioles, and 40X for peritubular capillaries. Silver stained whole slide images yielded the worst deep learning performance. Thus, this largest study to date adapted deep learning for the segmentation of kidney histologic structures across multiple stains and pathology laboratories. All data used for training and testing and a detailed online tutorial will be publicly available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8414393PMC
http://dx.doi.org/10.1016/j.kint.2020.07.044DOI Listing

Publication Analysis

Top Keywords

deep learning
24
histologic structures
16
slide images
16
segmentation histologic
8
structures kidney
8
periodic acid
8
optimal digital
8
images yielded
8
learning segmentation
8
bowman's capsule
8

Similar Publications

Purpose: Identifying muscles linked to postoperative physical function can guide protocols to enhance early recovery following total hip arthroplasty (THA). This study aimed to evaluate the association of preoperative pelvic and thigh muscle volume and quality with early physical function after THA in patients with unilateral hip osteoarthritis (HOA).

Methods: Preoperative Computed tomography (CT) images of 61 patients (eight males and 53 females) with HOA were analyzed.

View Article and Find Full Text PDF

In this research, a green approach utilizing deep eutectic solvent liquid-liquid microextraction is combined with smartphone digital image colorimetry for the determination of boron in nut samples. A smartphone camera was used to capture the image of the analyte extract located in a custom-made colorimetric box. Using ImageJ software, the images were split into RGB channels, with the green channel identified as the optimum.

View Article and Find Full Text PDF

Highly accurate real-space electron densities with neural networks.

J Chem Phys

January 2025

Microsoft Research AI for Science, 21 Station Road, Cambridge CB1 2FB, United Kingdom.

Variational ab initio methods in quantum chemistry stand out among other methods in providing direct access to the wave function. This allows, in principle, straightforward extraction of any other observable of interest, besides the energy, but, in practice, this extraction is often technically difficult and computationally impractical. Here, we consider the electron density as a central observable in quantum chemistry and introduce a novel method to obtain accurate densities from real-space many-electron wave functions by representing the density with a neural network that captures known asymptotic properties and is trained from the wave function by score matching and noise-contrastive estimation.

View Article and Find Full Text PDF

With the global population aging at an unprecedented rate, there is a need to extend healthy productive life span. This review examines how Deep Learning (DL) and Generative Artificial Intelligence (GenAI) are used in biomarker discovery, deep aging clock development, geroprotector identification and generation of dual-purpose therapeutics targeting aging and disease. The paper explores the emergence of multimodal, multitasking research systems highlighting promising future directions for GenAI in human and animal aging research, as well as clinical application in healthy longevity medicine.

View Article and Find Full Text PDF

Background Detection and segmentation of lung tumors on CT scans are critical for monitoring cancer progression, evaluating treatment responses, and planning radiation therapy; however, manual delineation is labor-intensive and subject to physician variability. Purpose To develop and evaluate an ensemble deep learning model for automating identification and segmentation of lung tumors on CT scans. Materials and Methods A retrospective study was conducted between July 2019 and November 2024 using a large dataset of CT simulation scans and clinical lung tumor segmentations from radiotherapy plans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!