With the emergence of the coronavirus disease (COVID-19), it is essential that face masks demonstrating significant anti-droplet and hydrophobic characteristics are developed and distributed. In this study, a commercial compressed-polyurethane (C-PU) mask was modified by applying a hydrophobic and anti-droplet coating using a silica sol, which was formed by the hydrolysis of tetraethoxysilane (TEOS) under alkaline conditions and hydrolyzed hexadecyltrimethoxysilane (HDTMS) to achieve hydrophobization. The modified mask (C-PU/Si/HDTMS) demonstrated good water repellency resulting in high water contact angle (132°) and low sliding angle (17°). Unmodified and modified masks were characterized using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). A drainage test confirmed the strong interaction between the mask surface and coating. Moreover, the coating had negligible effect on the average pore size of the C-PU mask, which retained its high breathability after modification. The application of this coating is a facile approach to impart anti-droplet, hydrophobic, and self-cleaning characteristics to C-PU masks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7410795PMC
http://dx.doi.org/10.1016/j.eti.2020.101093DOI Listing

Publication Analysis

Top Keywords

anti-droplet hydrophobic
12
c-pu mask
8
surface innovation
4
innovation enhance
4
anti-droplet
4
enhance anti-droplet
4
hydrophobic
4
hydrophobic behavior
4
behavior breathable
4
breathable compressed-polyurethane
4

Similar Publications

Constructing an easily repairable hydrophobic layer on the hydrogel surface that confers resistance to liquid interference remains a great challenge for hydrogel strain sensors. In this paper, superhydrophobic hydrogel sensors were prepared by driving hydrophobic organically modified silica (o-SiO) nanoparticles to the surface of polyacrylamide/sodium alginate (PAM/SA) double network hydrogels by a weak ultrasonic field in o-SiO/cyclohexane dispersion. The hydroxyl groups present on the surface of o-SiO are able to form hydrogen bonds with hydrogels, which in turn form a strong surface hydrophobic layer on its surface.

View Article and Find Full Text PDF

With the emergence of the coronavirus disease (COVID-19), it is essential that face masks demonstrating significant anti-droplet and hydrophobic characteristics are developed and distributed. In this study, a commercial compressed-polyurethane (C-PU) mask was modified by applying a hydrophobic and anti-droplet coating using a silica sol, which was formed by the hydrolysis of tetraethoxysilane (TEOS) under alkaline conditions and hydrolyzed hexadecyltrimethoxysilane (HDTMS) to achieve hydrophobization. The modified mask (C-PU/Si/HDTMS) demonstrated good water repellency resulting in high water contact angle (132°) and low sliding angle (17°).

View Article and Find Full Text PDF

Robust nonsticky superhydrophobicity by the tapering of aligned ZnO nanorods.

Chemphyschem

April 2014

Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049 (China).

The robust nonsticky superhydrophobicity of aligned nanoneedle films is reported. A facile, efficient, cheap, and available method based on the diffusion-limited crystal growth principle is proposed for controlling the tapering of ZnO nanorods, the profiles of which can be tuned effectively by synergetic control over reaction time and temperature in an extremely strong alkaline reaction system. The synthesized nanoneedle, nanopencil, and nanorod arrays are chosen for studying the effects of nanoscale topography on anti-droplet-sticking ability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!