The increase of the industrialization process brought the growth of pollutant emissions into the atmosphere. At the same time, the demand for advances in aerosol filtration is evolving towards more sustainable technologies. Electrospinning is gaining notoriety, once it enables to produce polymeric nanofibers with different additives and also the obtaining of small pore sizes and fiber diameters; desirable features for air filtration materials. Therefore, this work aims to evaluate the filtration performance of cellulose acetate (CA) nanofibers and cationic surfactant cetylpyridinium bromide (CPB) produced by electrospinning technique for retention of aerosol nanoparticles. The pressure drop and collection efficiency measurements of sodium chloride (NaCl) aerosol particles (diameters from 7 to 300 nm) were performed using Scanning Mobility Particle Sizer (SMPS). The average diameter of the electrospun nanofibers used was 239 nm, ranging from 113 to 398 nm. Experimental results indicated that the nanofibers showed good permeability (10 m) and high-efficiency filtration for aerosol nanoparticles (about 100 %), which can include black carbon (BC) and the new coronavirus. The pressure drop was 1.8 kPa at 1.6 cm s, which is similar to reported for some high-efficiency nanofiber filters. In addition, it also retains BC particles present in air, which was about 90 % for 375 nm and about 60 % for the 880 nm wavelength. Finally, this research provided information for future designs of indoor air filters and filter media for facial masks with renewable, non-toxic biodegradable, and potential antibacterial characteristics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366959 | PMC |
http://dx.doi.org/10.1016/j.psep.2020.07.024 | DOI Listing |
Pest Manag Sci
January 2025
College of Plant Protection, Shanxi Agricultural University, Taigu, China.
Background: As sex pheromones are environmentally friendly and specific, they are often used to monitor and control oriental fruit moths (OFMs). Currently, non-biodegradable polymers are commonly employed as carriers to prepare controlled sex pheromone release systems for plant protection. Electrospinning is a relatively simple technique for preparing biodegradable nanofibers that allows for the controlled release of sex pheromones.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
Electrospinning, a technique for creating fabric materials from polymer solutions, is widely used in various fields, including biomedicine. The unique properties of electrospun fibrous membranes, such as large surface area, compositional versatility, and customizable porous structure, make them ideal for advanced biomedical applications like tissue engineering and wound healing. By considering the high biocompatibility and well-known regenerative potential of polylactic acid (PLA) and chitosan (CH), as well as the versatile antibacterial effect of silver nanoparticles (AgNPs), this study explores the antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes with a unique nanofibrous structure and varying concentrations of AgNPs.
View Article and Find Full Text PDFDiscov Nano
January 2025
National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.
Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m g), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h).
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Menoufia University, Shibin El-Kom, 32511, Egypt.
In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Polymers for Health and Biomaterials, IBMM UMR 5247, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France.
With a prevalence of over 90% in people over 50, intervertebral disc degeneration (IVDD) is a major health concern. This weakening of the intervertebral discs can lead to herniation, where the nucleus pulpus (NP) leaks through the surrounding Annulus Fibrosus (AF). Considering the limited self-healing capacity of AF tissue, an implant is needed to restore its architecture and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!